

water affairs

Department: Water Affairs <mark>REPUBLIC OF SOUTH AFRICA</mark>

REPORT NO: P WMA 11/U10/00/3312/3/1/5

The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water

ENGINEERING FEASIBILITY DESIGN REPORT

SUPPORTING DOCUMENT 5:

DAM TYPE SELECTION

FINAL

NOVEMBER 2015

Project name:	The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study Raw Water	
Report Title:	Engineering Feasibility Design Report	
Sub-report title:	Supporting Document 5: Dam Type Selection Report	
Author:	A Combrinck, DB Badenhorst, SM Hossell	
PSP project reference no.:	J01763	
DWA Report no.:	P WMA 11/U10/00/3312/3/1/5	
Status of report:	Final	
First issue:	August 2014	
Final issue:	November 2015	

CONSULTANTS: AECOM (BKS*) in association with AGES, MM&A and Urban-Econ.

Approved for Consultants:

ombrinck

OBBadenhont .

Andriëtte Combrinck Sub-Task Leader

Danie Badenhorst Task Leader

DEPARTMENT OF WATER AFFAIRS (DWA): Directorate: Options Analysis

Approved for DWA:

K Bester Chief Engineer: Options Analysis (East)

LS Mabuda

Chief Director: Integrated Water Resource Planning

BKS (Pty) Ltd was acquired by AECOM Technology Corporation on 1 November 2012

Mogoba Maphuthi & Associates (MMA)

TABLE OF CONTENTS

Page

1	INTRODUCTION 1-1
1.1	Scope of this report 1-1
1.2	Layout of this report 1-1
2	DAM TYPE OPTIONS – REQUIRED MATERIALS
2.1	Introduction 2-1
2.2	Dam type options considered 2-1
3	GEOTECHNICAL (FOUNDATIONS) AND MATERIALS INVESTIGATION – AVAILABLE MATERIALS
3.1	Introduction
3.2	Geotechnical (foundations) investigations
3.3	Materials investigations
4	Cost Model 4-1
4.1	Introduction and objective 4-1
4.2	Bill of quantities and rates
4.3	Rates for embankment-forming materials
4.4	Rates for excavation activities
4.5	Rates for concrete
5	BASIC INFORMATION – SMITHFIELD DAM
5.1	Introduction and objective
5.2	Topographical surveys and mapping5-2
5.3	Water requirements, dam yield characteristics and costs 5-2
5.4	Flood hydrology
5.5	Dam characteristics
5.6	Geotechnical investigations
	5.6.1 Materials investigations
57	Other parameters
0.7	5.7.1 Filters and transition layers 5-11
	5.7.2 Slopes
6	SMITHFIELD DAM – ASSESSMENT BEFORE AND DURING GEOTECHNICAL INVESTIGATIONS 6-1
6.1	Introduction and objective
6.1	Introduction and objective6

6.2	Dam types		
6.3 Spillway layouts		ay layouts	
	6.3.1	Option 16-1	
	6.3.2	Option 2	
	6.3.3	Option 3	
6.4	Aspec	ts of the construction costs	
	6.4.1	Costs for the excavation	
	6.4.2	Costs for the spillway and chute6-2	
	6.4.3	Costs for the embankment6-2	
6.5	Social	and environmental aspects	
	6.5.1	Safety of people	
	6.5.2	Effective environmental footprint6-3	
6.6	Compa	arison of options	
6.7	Recon	nmendation	
6.8	During	geotechnical investigations	
	6.8.1	Drilling programme	
	6.8.2	Findings during geotechnical investigations	
	6.8.3	Results of interim geotechnical drilling investigation6-5	
_			
7	SMITH	FIELD DAM – ASSESSMENT AFTER GEOTECHNICAL INVESTIGATIONS	
7.1	Introdu	uction and objective	
7.2	Dam types		
7.3	Dam size and layout7-2		
7.4	Priority	y sequences	
	7.4.1	Roller compacted concrete (RCC) gravity dam7-3	
	7.4.2	Zoned earthfill embankment dam7-3	
	7.4.3	Earth core rockfill dam (ECRD)7-4	
	7.4.4	Concrete faced rockfill dam (CFRD)7-4	
7.5	Compa	arison in terms of construction cost	
	7.5.1	Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam - Zoned earthfill embankment dam7-5	
	7.5.2	Option 2: Main dam - Earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam	
	7.5.3	Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam	
	7.5.4	Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam7-13	
	7.5.5	Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam – Zoned earth core rockfill dam7-16	
	7.5.6	Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam - Zoned earthfill embankment dam	
	7.5.7	Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddle dam - Zoned earthfill embankment dam7-22	
	7.5.8	Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddle dam - Zoned earthfill embankment dam7-25	

	7.5.9 Other options	7 - 27
	7.5.10 Summary of cost comparison	7-28
7.6	Comparison of primary main dam type options (Options 1, 4, 6 and 7)	7-29
7.7	Comparison in terms of availability of material and material handling	7-30
7.8	Comparison in terms of construction period	7-33
7.9	Other factors influencing the dam type decision	7-38
	7.9.1 Visual impact	7-38
	7.9.2 Risk involved with the diversion on embankment dams	7-38
7.10	Comparison and Conclusion	7-39
7.11	Recommendation	7-41
8	BASIC INFORMATION – LANGA BALANCING DAM	8-1
8.1	Introduction	8-1
8.2	Topographical surveys and mapping	8-2
8.3	Water requirements, dam yield characteristics and costs	8-2
8.4	Flood hydrology	8-2
8.5	Dam characteristics	8-3
8.6	Geotechnical investigations	8-4
	8.6.1 Materials investigations	8-4
	8.6.2 Geotechnical (foundation) investigations	8-8
8.7	Other parameters	8-9
	8.7.1 Filters and transition layers	8-9
	8.7.2 Slopes	8-10
9	LANGA BALANCING DAM – ASSESSMENT BEFORE AND DURING GEOTECHNICAL	
	INVESTIGATIONS	9-1
9.1	Introduction and objective	9-1
9.2	Dam types	9-1
9.3	Dam layouts	
9.4	Aspects of the construction costs	9-2
	9.4.1 Costs for the excavation	9-2
9.5	Recommendation	9-2
9.6	During geotechnical investigations	9-2
	9.6.1 Drilling programme	9-2
10	LANGA BALANCING DAM – ASSESSMENT AFTER GEOTECHNICAL INVESTIGATIONS	10-1
10.1	Introduction and objective	10-1
10.2	Dam types	10-2
10.3	Dam size and layout	10-2
10.4	Priority sequences	10-2
	10.4.1 Concrete faced rockfill dam (CFRD)	10-2

	10.4.2 Roller compacted concrete (RCC) gravity dam	
10.5	Comparison in terms of construction cost	10-3
	10.5.1 Option 1: Concrete Faced Rockfill Dam (CFRD)	
	10.5.2 Option 2: Roller Compacted Concrete Dam (RCC)	10-5
	10.5.3 Option 3: Composite Dam – Central RCC section with CFRD left	t and right flank 10-6
	10.5.4 Summary of cost comparison	
10.6	Comparison in terms of availability of material and material handling	10-8
	10.6.1 On site	
	10.6.2 From commercial sources	10-8
	10.6.3 General	10-9
10.7	Other factors influencing the dam type selection	10-9
	10.7.1 Construction period	
10.8	Comparison and conclusion	10-10
10.9	Recommendation	10-10
11	SENSITIVITY ANALYSIS	11-1
11.1	Introduction	11-1
11.2	Base options considered	11-1
11.3	Sensitivity results	11-1
	11.3.1 Increased foundation depth and excavations	11-1
	11.3.2 Haulage distance, relating to material availability	11-4
	11.3.3 Impact of climate change on Smithfield Dam	11-7
11.4	Conclusions and recommendations	11-7
12	CONCLUSIONS AND RECOMMENDATIONS	12-1
12.1	Smithfield Dam	12-1
12.2	Langa Balancing Dam	12-1
13	References	

LIST OF TABLES

Page

Table 2.1: Dam Dam	type options investigated for Smithfield Dam and Langa Balancing
Table 3.1: Lege Smit	and and uses for the various types of material available on the
Table 3.2: Sim dam	plified graphical presentation of required material for the four standard type options as well as zoning alternatives
Table 4.1: 201	3 Rates adopted for embankment forming-materials 4-3
Table 4.2: 201	3 Rates adopted for excavation activities 4-4
Table 4.3: 2013	Rates adopted for different types of concrete used in the dam forming 4-4
Table 5.1: Sum	mary of existing reports sourced for information on Smithfield Dam 5-1
Table 5.2: Floo	od peaks for the Smithfield Dam site (m ³ /s)5-3
Table 5.3: Tota	Il required freeboard for different dam types - Smithfield Dam site 5-4
Table 5.4: Dan	n characteristics for the selected Smithfield Dam
Table 5.5: Sum	mary of commercial sources close to the Smithfield Dam site
Table 5.6: Avai	lable material for Smithfield Dam – construction of an RCC dam 5-6
Table 5.7: Avai dam	lable material for Smithfield Dam – construction of an embankment
Table 5.8: Slop	bes assumed for excavation in Quarry I 5-9
Table 5.9: Exca geot	avation depths (m) for Smithfield Dam (main dam wall) based on technical investigations
Table 5.10: geot	Excavation depths (m) for Smithfield Dam (saddle dam wall) based on technical investigations
Table 5.11:Exc chut	avation depths (m) for Smithfield Dam's spillway structure (concrete te) based on geotechnical investigations
Table 5.12:NOC for v	widths, curtain grout spacing and width of filters and transition layers various dam types considered in cost comparison
Table 5.13: Eng	jineering properties for the various material type
Table 5.14: Ass	umed slopes for various dam types considered in cost comparison5-13

Table 6.1: Evaluation of different dam layouts for Smithfield Dam
Table 7.1: Dam type options investigated for Smithfield Dam
Table 7.2: Balancing of materials for Option 1 7-6
Table 7.3: Balancing of materials for option 2
Table 7.4: Balancing of materials for option 3
Table 7.5: Balancing of materials for option 4
Table 7.6: Balancing of materials for option 5
Table 7.7: Balancing of materials for option 6
Table 7.8: Balancing of materials for option 7
Table 7.9: Balancing of materials for option 8
Table 7.10: Cost estimates for various dam types for Smithfield Dam
Table 7.11: Material handling for various dam types for Smithfield Dam
Table 7.12: Production rates for comparison of the construction programme of thethree main dam types
Table 7.13: Summary of the lowest cost dam type options
Table 8.1: Summary of existing reports sourced for information on Langa BalancingDam
Table 8.2: Flood peaks for the Langa Balancing Dam site
Table 8.3: Total required freeboard for different dam types – Langa Balancing Dam site
Table 8.4: Dam characteristics for the selected Langa Balancing Dam
Table 8.5: Commercial sources close to the Langa Balancing Dam site
Table 8.6: Available material for Langa Balancing Dam – construction of an RCC dam
Table 8.7: Available material for Langa Balancing Dam – construction of a CFRD 8-6
Table 8.8: Excavation depths (m) for Langa Balancing Dam based on geotechnical investigations
Table 8.9: Excavation depths (m) for Langa Balancing Dam's spillway structure(concrete chute) based on geotechnical investigations
Table 8.10: NOC widths, curtain grout spacing and width of filters and transition layersfor various dam types considered in cost comparison8-9

Table 8.11	: Parameters	for	the	various	soil	types
						8-10
Table 8.12	: Resultant slopes fo	or various d	lam types	considered i	n cost compai	rison8-10
Table 10.1	:Dam type options i	nvestigated	for Langa	a Balancing D)am	10-2
Table 10.2	: Balancing of mater	ials for Opt	ion 1			10-4
Table 10.3	: Balancing of mater	rials for opt	ion 2			10-5
Table 10.4	: Balancing of mater	rials for opt	ion 3			10-7
Table 10.5	: Cost estimates for	various da	m types fo	or the Langa I	Balancing Dan	n 10-8
Table 10.6	: Material handling f	or various o	dam types	for the Lang	a Balancing D	am . 10-9
Table 10.7	7: Summary of the various aspects for	three five Langa Bala	preferred ancing Da	dam type o m)	ptions (with r	egard to 10-10
Table 11.1	: Effect of increased (Smithfield Dam)	l foundatior	n depth or	n cost of dam	type options,	per item 11-2
Table 11.2	: Effect of increased (Smithfield Dam) (R	d foundatio	n depth o	n cost of dar	n type options	s, in total 11-2
Table 11.3	: Effect of increased (Langa Dam)	I foundatior	n depth or	n cost of dam	type options,	per item 11-3
Table 11.4	: Effect of increased (Langa Dam) (R, ex	d foundation cl. VAT)	n depth o	n cost of dar	n type options	s, in total 11-3
Table 11.5	: Cost estimates for	various da	m types fo	or Smithfield	Dam	11-5
Table 11.6	5: Impact of import Smithfield Dam	ing materia	al on the	ranking of	dam type op	tions for 11-6
Table 11.7	: Impact of importin Dam	g material o	on the ran	king of dam	type options f	or Langa 11-6
Table C.1:	Soil parameters					C-2
Table C.2:	Slope stability analy	ysis results				C-3
Table C.3:	Slope stability analy	ysis results				C-3
Table C.4:	Slope stability analy	ysis results				C-4
Table F.1:	Option 1: Main dam -zoned earthfill emb	- Roller co bankment d	mpacted of a mpact	concrete (RC cing spreads	C) gravity; Sa	ddle dam F-2
Table F.2:	Option 2: Main dan embankment dam b	n - Earth co balancing si	ore rockfill oreadshee	l dam; Saddle	e dam - Zoneo	d earthfill F-3

Table F.3: Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam balancing spreadsheet
Table F.4: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam balancing spreadsheet
Table F.5: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam - Earth corerockfill dam balancing spreadsheet
Table F.6: Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam -Zoned earthfill embankment dam balancing spreadsheet
Table F.7: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddledam - Zoned earthfill embankment dam balancing spreadsheet
Table F.8: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddledam - Zoned earthfill embankment dam balancing spreadsheet
Table G.1: Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam- zoned earthfill embankment dam – Bill of quantitiesG-2
Table G.2: Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam- zoned earthfill embankment dam – Cost breakdownG-3
Table G.3: Option 2: Main dam - Earth core rockfill dam; Saddle dam – Zoned earthfill embankment dam – Bill of quantitiesG-4
Table G.4: Option 2: Main dam - Earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam – Cost breakdownG-5
Table G.5: Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam – Bill of quantitiesG-6
Table G.6: Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam – Cost breakdownG-7
Table G.7: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam – Bill of quantitiesG-8
Table G.8: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam – Cost breakdownG-9
Table G.9: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam - Earth core rockfill dam – Bill of quantitiesG-10
Table G.10: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam - Earth core rockfill dam – Cost breakdownG-11

Table G.11: Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam
- Zoned earthfill embankment dam – Bill of quantitiesG-12
Table G.12: Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam
- Zoned earthfill embankment dam – Cost breakdownG-13
Table G.13: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddle
dam - Zoned earthfill embankment dam – Bill of quantitiesG-14
Table G.14: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddle
dam - Zoned earthfill embankment dam – Cost breakdownG-15
Table G.15: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddle
dam - Zoned earthfill embankment dam – Bill of quantitiesG-16
Table G.16: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddle
dam - Zoned earthfill embankment dam – Cost breakdownG-17
Table G.17: Diversion works – Bill of quantities
Table G.18: Spillway and chute – Bill of quantitiesG-20
Table G.19: Intake and outlet works – Bill of quantitiesG-22
Table H.1: Comparison of BoQs for Primary Main Dam Type Options
Table I.1: Langa soil parameters I-2
Table I.2: Slope stability analysis results I-2
Table L.1: Option 1 - Concrete faced rockfill dam balancing spreadsheetL-9
Table L.2: Option 2 - Roller compacted concrete dam balancing spreadsheetL-9
Table L.3: Option 3 - Composite dam balancing spreadsheet
Table M.1: Langa Dam: Option 1: Concrete faced rockfill dam (CFRD) - Bill of
quantities M-2
Table M.2: Langa Dam: Option 1: Concrete faced rockfill dam (CFRD) – Total cost
summary M-3
Table M.3: Langa Dam: Option 2: Roller compacted concrete (RCC) dam - Bill of
quantities M-4
Table M.4: Langa Dam: Option 2: Roller compacted concrete (RCC) dam – Total cost
summary M-5
Table M.5: Langa Dam: Option 2: Composite dam – Bill of quantities
Table M.6: Langa Dam: Option 2: Composite dam – Total cost summary M-7

Table M.7: Langa Dam: Bill of quantities for costs comm	on to all options – Diversion
works	М-8
Table M.8: Langa Dam: Bill of quantities for costs comm	on to all options – Spillway
and chute	М-9

Table M.9: Langa Dam: Bill of quant	ities for costs common to all options – Intake and
outlet works	

APPENDICES

APPENDIX A	
Appendix B	BREAKDOWN OF RCC AND CVC RATES
Appendix C	
APPENDIX D TYPES	SMITHFIELD DAM: TYPICAL CROSS-SECTIONS FOR EACH OF THE CHOSEN DAM
APPENDIX E QUARRY)	SMITHFIELD DAM: LONG-SECTIONS OF GEOTECHNICAL (FOUNDATION AND INVESTIGATIONS
APPENDIX F SPREADS	
APPENDIX G	SMITHFIELD DAM: RESULTS FROM BALANCING EXERCISE – BILL OF QUANTITIES
APPENDIX H OPTIONS	SMITHFIELD DAM: COMPARISON OF BOQS FOR PRIMARY MAIN DAM TYPE
APPENDIX I	LANGA BALANCING DAM: RESULTS FROM SLOPE STABILITY ANALYSIS
APPENDIX J DAM TYPE	LANGA BALANCING DAM: TYPICAL CROSS-SECTIONS FOR EACH OF THE CHOSEN
APPENDIX K INVESTIGA	LANGA BALANCING DAM: LONG-SECTIONS OF GEOTECHNICAL (FOUNDATION)
APPENDIX L SPREADSI	LANGA BALANCING DAM: RESULTS FROM BALANCING EXERCISE – BALANCING HEETS

APPENDIX M LANGA BALANCING DAM: RESULTS FROM BALANCING EXERCISE – BILL OF QUANTITIES

LIST OF ABBREVIATIONS

ACRU	Agricultural catchments runoff units model
BoQ	Bill of Quantities
CFR	Concrete faced rockfill
CFRD	Concrete faced rockfill dam
CVC	Conventional vibrated concrete
DWA	Department of Water Affairs
ECR	Earth core rockfill
ECRD	Earth core rockfill dam
EIA	Environmental Impact Assessment
EWR	Ecological water requirement
FSL	Full supply level
HFY	Historic firm yield
ICOLD	International Commission on Large Dams
IVRCC	Immersion-vibrated roller compacted concrete
NGL	Natural ground level
NOCL	Non-overspill crest level
OCS	Off-channel storage
P&G	Preliminary & general
PSP	Professional Service Provider
RCC	Roller compacted concrete
RDF	Recommended design flood
SANCOLD	South African National Committee on Large Dams
MAR	Mean annual runoff
Masl	Metres above sea level
MOL	Minimum operating level
SEF	Safety evaluation flood
RCC	Roller compacted concrete
RCC	Roller compacted concrete dam
RID	Record of implementation decisions
RWSS	Regional Water Supply Scheme
TOR	Terms of Reference
URV	Unit reference value
USBR	United States Department of the Interior, Bureau of Reclamation
VAPS	Vaal Augmentation Planning Study
VAT	Value added tax (14%)
WRC	Water Research Commission
WRYM	Water Resources Yield Model
WRPM	Water Resources Planning Model

LIST OF UNITS

ha	hectare
km ²	square kilometre
m	metre
m ³	cubic metres
m ³ /s	cubic metres per second
masl	metres above sea level
R	rand
t/km².a	tons per square kilometre per annum
t/a	tons per annum

1 INTRODUCTION

1.1 SCOPE OF THIS REPORT

The purpose of this report is to provide a description of the dam type selection study that was conducted as part of the *uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water* to determine the best dam type for both *Smithfield Dam* and *Langa Balancing Dam*.

For this purpose consideration was given to **estimated construction costs** as well as other factors such as the **risk(s)** and **predicted construction periods/programmes** associated with the different dam types.

Figure 1.1 provides a work flow diagram summarising the specific *activities* that were considered, the sequence of activities, as well as *input* that was required in the process of selecting the best dam type. From **Figure 1.1** it is clear that balancing studies of available materials on site with required materials in various zones of possible dams had to be considered.

1.2 LAYOUT OF THIS REPORT

This report has been structured as follows:

- Section 1: Introduction
- Section 2: Discussion on the *required materials* based on the dam type options considered for both Smithfield and Langa Balancing dams;
- Section 3: Discussion on the *available materials* based on the geotechnical (foundations) and materials investigations for both Smithfield and Langa Balancing dams;
- Section 4: Details of the cost model that was used in the selection of the best dam type;
- Section 5: Basic information for Smithfield Dam;
- Section 6: Assessment of *Smithfield Dam* <u>before</u> the results from the geotechnical and material investigations became available;
- Section 7: Assessment of *Smithfield Dam* <u>after</u> the results from the geotechnical and material investigations became available;
- Section 8: Basic information for *Langa Balancing Dam*;
- Section 9: Assessment of Langa Balancing Dam before the results from the geotechnical and material investigations became available;

• Section 10: Assessment of *Langa Balancing Dam* <u>after</u> the results from the geotechnical and material investigations became available.

Figure 1.1: Work flow diagram adopted in the selection of the best dam type

2 DAM TYPE OPTIONS – REQUIRED MATERIALS

2.1 INTRODUCTION

For the purpose of selecting the best dam type for both Smithfield Dam and Langa Balancing Dam, many possible dam type options had to be considered. However, depending on the availability of materials on site, some of the dam type options had to be (1) eliminated, or (2) adjusted to include zones of alternative obtainable material.

2.2 DAM TYPE OPTIONS CONSIDERED

A summary of all possible dam type options is given in **Table 2.1**. As indicated in this table, six of the possible dam type options were eliminated from the start as it has traditionally proven to be extremely expensive and time-consuming or the topography at the chosen dam sites was not favourable for the specific option. Table provides the specifics with regard to the reasons for eliminating these options.

From the listed dam type options, and depending on the results from the geotechnical and materials investigations, various combinations or modifications of dam types were considered for Smithfield Dam and Langa Balancing Dam respectively. These are listed in Table 7.1 (Smithfield Dam) and Table 10.1 (Langa Balancing Dam) in the subsequent sections.

Table 2.1:Dam type options investigated for Smithfield Dam and LangaBalancing Dam

Dam type	Reason for not considering it in the dam type selection process of Smithfield Dam and Langa Balancing Dam
Roller compacted concrete (RCC) gravity dam	-
Zoned earthfill embankment dam	-
Earth core rockfill dam (including various options of zoning depending on availability of material)	-
Concrete faced rockfill dam (including various options of zoning depending on availability of material)	-
Composite dam (various options of concrete gravity dam with any of the above-mentioned embankment dams)	-
Conventional vibrated concrete (CVC) gravity dam	 More expensive (with a higher cement content) and longer construction period than roller compacted concrete (RCC) gravity dam
Conventional vibrated concrete (CVC) buttress dam	 More expensive than both RCC and CVC gravity dams Longer construction period
Concrete arch dam	 Valley shape not favourable More expensive than both RCC and CVC gravity dams
Hardfill concrete gravity dam	 Would need a large quantity of aggregates that is not available on site More expensive than both RCC and CVC gravity dams
Asphalt concrete gravity dam	 Too expensive Earthfill materials for the core (more favourable than asphalt) are available on site
Masonry/hand labour intensive methods	 This dam type does not meet the time requirement

3 GEOTECHNICAL (FOUNDATIONS) AND MATERIALS INVESTIGATION – AVAILABLE MATERIALS

3.1 INTRODUCTION

Geotechnical (foundations) and materials investigations were conducted as part of this study. This included the following:

- Seismic refraction surveys along and adjacent to the centre line of Smithfield Dam (including main and saddle dam walls), Langa Balancing Dam, the diversion tunnels and across the potential quarries, to guide the drilling investigation;
- Site specific probabilistic risk analysis for the Smithfield Dam as well as the Langa Balancing Dam areas;
- Additional geotechnical investigations for sources of dam construction materials by means of test pitting rotary core drilling and laboratory testing; and
- Additional geotechnical investigations for the foundations of Smithfield Dam (including main and saddle dam walls), Langa Balancing Dam as well as the spillway structures by means of rotary core drilling and Lugeon water pressure testing.

A description of the geotechnical (foundations) and materials investigations conducted can be found in the following reports (which are summarised in Table 5.1):

- P WMA 11/U10/00/3312/3/2- Geotechnical report (AECOM, AGES, MMA, & Urban-Econ, 2014)
- P WMA 11/U10/00/3312/3/2/1 Supporting document 1: Probabilistic seismic hazard analysis (Smithfield Dam) (AECOM, AGES, MMA, & Urban-Econ, 2014)
- P WMA 11/U10/00/3312/3/2/2 Supporting document 2: Seismic refraction investigation at the proposed uMkhomazi Water Project Phase 1 (AECOM, AGES, MMA, & Urban-Econ, 2014)
- P WMA 11/U10/00/3312/3/2/3 Supporting document 3: Smithfield Dam: Materials and geotechnical investigation (AECOM, AGES, MMA, & Urban-Econ, 2014)
- P WMA 11/U10/00/3312/3/2/4 Supporting document 4: Langa Balancing Dam: Materials and geotechnical investigation (AECOM, AGES, MMA, & Urban-Econ, 2014);

 P WMA 11/U10/00/3312/3/2/5 - Supporting document 5: Conveyance system: Materials and geotechnical investigation (AECOM, AGES, MMA, & Urban-Econ, 2014)

3.2 GEOTECHNICAL (FOUNDATIONS) INVESTIGATIONS

The geotechnical (foundations) investigations for Smithfield Dam are described in detail in **Section 5.6.2** of this report, and that for Langa Balancing Dam is described in **Section 8.6.2**.

3.3 MATERIALS INVESTIGATIONS

Based on information from the drilling, the various types of material available on the Smithfield and Langa Balancing Dam sites are described as follows:

- Overburden for soil: Organic topsoil (further referred to in this report as Material Type A);
- Clayey sand transported surface material (further referred to in this report as Material Type B) is suitable as impervious core material while the sand, clay and boulders might be considered as "dirty rockfill";
- **Completely and highly weathered shale** (further referred to in this report as *Material Type C*) can be considered for use as semi-pervious earthfill material or as transition material between a clay core and rockfill zones;
- Unweathered to moderately weathered shale (further referred to in this report as *Material Type D*) are generally medium strong to strong rocks in the in-situ location, but are prone to rapid slaking upon exposure to the atmosphere. With increased degree of induration, the potential for slaking decreases. This shale material, can be considered as rockfill, but when placed in an embankment must be covered by durable (dolerite) rock outer zones;
- Highly and moderately weathered dolerite (further referred to in this report as Material Type E) comprises strong boulders (corestones) in a matrix of clayey silt. This material can be considered for use as "dirty rockfill" or earthfill in certain zones of an embankment dam. Highly weathered dolerite at Smithfield Dam typically contains between 10% and 50% rock, while moderately weathered dolerite comprises of more than 50% corestones. These corestones can vary in size between 100 mm and 1 200 mm. Blasting is generally not very efficient and fragmentation is difficult to control. It might be necessary to remove the blocks that are too large for placing in a particular zone of the dam. These blocks might be suitable for use as rip-rap; and
- Slightly weathered and unweathered dolerite (further referred to in this report as Material Type F) is very sound, durable rock and is the only suitable source for concrete aggregate, rip-rap and filters.

Based on the above, the uses for the various types of material are summarised in **Table 3.1** with a simplified graphical representations (refer to **Appendix D** for the detailed cross sections) for the different dam type options investigated in **Section 2** and given in **Table 3.2**. These cross-sections are simplified cross-sections and were used for identification purposes only.

Further details on the sources for the discussed material types for Smithfield Dam is given in **Section 5.6.1** of this report, whereas that for Langa Balancing Dam are described in **Section 8.6.1**.

Table 3.1:Legend and uses for the various types of material available on the
Smithfield Dam site

No.	Colour	Material type	Use
А		Overburden for soil: Organic topsoil	 Landscaping Downstream protection of embankment dams
В		Clayey sand, transported surface material	Impervious core of embankment dams
с		Completely and highly weathered shale	• Semi-pervious material of earthfill dams
D		Unweathered to moderately weathered shale	 Rockfill (certain zones of a ECRD to be covered by slightly weathered / unweathered dolerite) Rockfill (certain zones of a CFRD on the downstream side)
Е		Highly and moderately weathered dolerite	 Rockfill (certain zones of a CFRD on the downstream side) – boulders to be removed
F		Slightly weathered and unweathered dolerite	 Concrete aggregate and sand Rip rap Filters Rockfill Transition between sand layer(s) and rockfill zone(s) on an ECRD Transition between face slab and rockfill zone(s) on a CFRD
G		Imported sand (from commercial source)	 Chimney and blanket drains for earthfill embankment dams Blanket drain Transition between gravel layer(s) and earthfill zone(s) for an earthfill dam Transition between gravel layer(s) and impervious core zone(s) on an ECRD
-		Concrete	 See Table
-		Conventional vibrated concrete (CVC)	 See Table
-		Roller compacted concrete (RCC)	 See Table
-		Immersion vibration roller compacted concrete (IVRCC)	 See Table

Table 3.2:Simplified graphical presentation of required material for the four
standard dam type options as well as zoning alternatives

Dam type	Standard zoning option			Alternative zoning option(s)
Roller compacted concrete (RCC) gravity dam			None	
Zoned earthfill embankment dam				None
Earth core rockfill dam	Zoning option 1		Zoning option 2	
d rockfill dam	option 1		Zoning option 2	
Concrete faced Zoning o		Zoning o	Zoning option 3	

4 COST MODEL

4.1 INTRODUCTION AND OBJECTIVE

A Microsoft Excel spreadsheet-based cost model was developed for the purpose of this study. The objective of the cost model was to develop an interactive, user friendly spreadsheet of cost estimates with interlinked facilities for each component of both the Smithfield Dam and Langa Balancing Dam to compare construction cost estimates for:

- Selection of the optimal dam size (i.e. FSL);
- Guidance of the geotechnical investigations;
- Selection of the optimal dam type; and ultimately;
- Selection of the best scheme.

The cost model made provision for various dam sizes in sufficiently small incremental steps within the envelope of required yields to allow for optimization of (1) the dam size (see report *P WMA 11/U10/00/3312/3/1/3: Optimization of scheme configuration* (AECOM, AGES, MMA, & Urban-Econ, 2014)), as well as, (2) the dam type (this report). As such provision was made for full supply levels up to 940 masl (Smithfield Dam) and 923 masl (Langa Balancing Dam) as well as the following dam types:

- Roller compacted concrete (RCC) gravity dam;
- Zoned earthfill embankment dam;
- Earth core rockfill dam (ECRD) including various options of zoning depending on availability of material;
- Concrete faced rockfill dam (CFRD) including various options of zoning depending on availability of material; and
- Composite dam various options.

The cost model was developed early in the study and was updated as and when new information became available.

A comprehensive description of the cost model (as well as a user manual) is provided in *Report P WMA 11/U10/00/3312/2/3/1/4 - Supporting document 4: Cost model* (AECOM, AGES, MMA, & Urban-Econ, 2014).

4.2 BILL OF QUANTITIES AND RATES

The bill of quantities incorporated in the cost model for each of the different dam types was based on the *Vaal Augmentation Planning Study (VAPS)* (Consult 4, 1994) with a level of detail commensurate to a feasibility study.

The latest rates from tenders for the various dam components were obtained and incorporated into the cost model. Main Smithfield Dam components include the following:

- Main and saddle dam forming and excavation;
- Diversion works;
- Intake structure;
- Outlet works;
- Spillway, i.e. approach, chute and plunge pool;
- Measuring weirs;
- Landscaping;
- Planning design and supervision; and
- Others, i.e. miscellaneous, preliminary and general, and contingencies.

For dam type selection, costs for the following activities were excluded from the cost model: (1) road deviations, (2) housing and accommodation, (3) access road, (4) pipelines, (5) water to site, (6) electricity supply and deviation, (7) environmental, and (8) relocation, as these are common to all compared dam types. These costs will be taken into account in the feasibility design.

4.3 RATES FOR EMBANKMENT-FORMING MATERIALS

In accordance with the South African Bureau of Standards' Standardized Specification for Civil Engineering Construction DE: Small Earth Dams (South African Bureau of Standards, 1984) rates included in the cost model for all *embankment forming-materials*, i.e. (1) impervious fill, (2) semi pervious fill, (3) rockfill, (4) rip-rap, (5) gravel and sand layer(s), (6) drains, (7) IVRCC, (8) RCC, and (9) CVC sand, consists of the following costs:

- Selecting and delivery of material excavated; or
- Excavating and selecting material from borrow pits in the designated borrow areas; as well as
- Haulage;
- Spreading;
- Addition of water or drying;

- Placing;
- Compacting;
- Grading in the relevant zones or sections of the embankment;
- Stockpiling or processing, or both, where necessary; and
- Final grading of borrow pits with in the dam basin.

Rates adopted for embankment forming-materials are summarised in Table 4.1.

 Table 4.1:
 2013 Rates adopted for embankment forming-materials

ltem no	Item description		Rate (R/m³)
		Forming embankment	
	a)	Core (impervious earthfill)	48.37
	b)	Upstream and downstream shells (semi pervious earthfill)	48.37
	c)	Rockfill (Impervious layer)	91.00
8.3.5	d)	Rip-rap	438.52
	e)	Gravel layer	97.94
	f)	Sand layer transition zone	97.94
	g)	Blanket and chimney drains	789.45
	h)	IVRCC ⁽¹⁾	45.45
	i)	RCC concrete	1156.71
	j)	CVC concrete	1 981.85

(1) Explained in detail in Section 4.5 and is per square metre of dam surface area

4.4 RATES FOR EXCAVATION ACTIVITIES

In accordance with the South African Bureau of Standards' Standardized Specification for Civil Engineering Construction DE: Small Earth Dams (South African Bureau of Standards, 1984) rates included for all excavation activities distinguished between the following:

- Material from essential excavations, i.e. the embankment foundation excavations, that is excavated and *unsuitable for use in the embankments*. These rates cover the cost of excavation in all materials, removal to the *designated waste disposal site* that was identified in the dam basin, spreading and trimming. The location of the waste disposal site is shown in Figure A.5 in Appendix A.
- Material from essential excavations, i.e. the embankment foundation excavations, that is excavated and *suitable for use in the embankments*. This rate covers the cost of excavation of the hole in all materials and trimming it ready for further construction activity. This material might need to be

stockpiled for later use in a *designated stockpile area*. Provision is also made here for excavation in intermediate and hard rock material.

Rates adopted for excavation activities are summarised in Table 4.2.

Table 4.2:	2013 Rates adopted for excavation activities
------------	--

ltem no	Item description	Rate (R/m³)
	Excavation	
8.3.3	 a) Material unsuitable for embankment (excavation, removal to designated waste disposal sites in the dam basin, spreading and trimming) 	31.60
	 b) Material suitable for embankment from essential excavations Stockpiled (excavation , possible removal to stockpile areas, and trimming it ready for further construction activity) 	30.30
	 c) Extra over items (b) for excavation in: 1) Intermediate material 2) Hard rock material 	Included in 8.3.3 (a) 36.50

4.5 RATES FOR CONCRETE

In accordance with the South African Bureau of Standards' Standardized Specification for Civil Engineering Construction DE: Small Earth Dams (South African Bureau of Standards, 1984) rates adopted for the *different types of concrete* used in the dam forming are summarised in Table 4.3.

Table 4.3:2013 Rates adopted for different types of concrete used in the dam
forming

Acronym	Item description	Definition	Component of dam	Rate (R/m3)
CVC	Conventional vibrated concrete	 A specific mix-design of concrete that produces a specific range of strengths and is delivered by dump trucks or conveyors, poured and compacted with concrete vibrators. Two types of conventional vibrated concrete as follows were used: Mass concrete: Concrete set without structural reinforcement. Strength: 5 - 10 MPa Structural concrete: A special type of concrete that is capable of carrying a structural load or forming an integral part of a structure. Strength: 25 - 30 MPa 	 Diversion works; Intake structure; Outlet works; Spillway, i.e. approach, chute and plunge pool; Measuring weirs. 	1 981.85

Acronym	Item description	Definition	Component of dam	Rate (R/m3)
RCC	Roller compacted concrete	 A special blend of concrete that has essentially the same constituents as conventional concrete but in different ratios, and increasingly with partial substitution of fly ash for Portland cement. 	 Main dam and spillway forming on a concrete gravity dam 	1 156.71
		 A mix of cement/fly ash, water, sand, aggregate and common additives, but contains much less water. The produced mix is drier and essentially has no slump. 		
		 Placed in a manner similar to paving: the material is delivered by dump trucks or conveyors, spread by small bulldozers or specially modified asphalt pavers, and then compacted by vibratory rollers. 		
IVRCC	Immersion- vibrated roller compacted concrete	• A special blend of conventional roller compacted concrete that is used as interface concrete to achieve an excellent finish and prevents the ingress of water into the RCC, thus improving the durability of the RCC concrete.	 Facecrete layer on a concrete gravity dam 	45.40 / m ² of dam surface area

(1) All types sourced from local site processed dolerite materials.

The rate for roller compacted concrete (RCC) included in

Table **Table 4.3** covers the cost of (1) materials, (2) blasting and processing, (3) mixing, (4) transport, (5) spreading and (6) compacting, as well as (7) other costs i.e. curing, water pressure testing, etc.

The rate for *conventional vibrated concrete (CVC)* included in **Table 4.3** covers the cost of (1) materials, (2) blasting and processing, (3) mixing, (4) transport, (5) cooling and (6) vibration, as well as (7) other costs i.e. placing labour, placing plant and joints cleaning, etc.

Detailed cost breakdowns of RCC as well as CVC are included in Appendix B.

5 BASIC INFORMATION – SMITHFIELD DAM

5.1 INTRODUCTION AND OBJECTIVE

Basic information required for the *Dam Type Selection task* was sourced from existing reports as summarised in Table 5.1. For ease of reference, a summary of the obtained information is described in Section 5.2 to Section 5.3.

Table 5.1:Summary of existing reports sourced for information on SmithfieldDam

Existing information	Report
Topographical surveys and mapping	Described in this report (P WMA 11/U10/00/3312/3/1/5)
Hydrology (streamflow)	P WMA 11/U10/00/3312/2/1 Hydrological assessment of the uMkhomazi River catchment report
Water requirements	P WMA 11/U10/00/3312/2/2 Water requirements and return flows report
Dam yield characteristics	P WMA 11/U10/00/3312/2/3 Water resources yield assessment report
Dam characteristics: (1) Dam position (2) Final layout	 P WMA 11/U10/00/3312/2/3/1/2 Supporting document 2: Dam position report P WMA 11/U10/00/2212/2/2/1/2
	Supporting document 3: Optimization of scheme configuration
Layout, costs and economics	(1) P WMA 11/U10/00/3312/2/3/1/3Supporting document 3:Optimization of scheme configuration
	(2) P WMA 11/U10/00/3312/2/3/1/4 Supporting document 4: Cost model
	(3) P WMA 11/U10/00/3312/2/3/1/6Supporting document 6:Economic comparison of the uMkhomazi-uMgeni transfer
	scheme with desalination and re-use option

Existing information	Report
Geotechnical and materials	(1) P WMA 11/U10/00/3312/3/2
in tooligatione	
	(2) P WMA 11/U10/00/3312/3/2/1
	Supporting document 1:
	Probabilistic seismic nazard analysis (Smithfield Dam)
	(3) P WMA 11/U10/00/3312/3/2/2
	Supporting document 2:
	Seismic refraction investigation at the proposed uMkhomazi Water Project Phase 1
	(4) P WMA 11/U10/00/3312/3/2/3
	Supporting document 3:
	Smithfield Dam: Materials and geotechnical investigation
	(5) P WMA 11/U10/00/3312/3/2/4
	Supporting document 4:
	Langa Balancing Dam: Materials and geotechnical investigation
	(6) P WMA 11/U10/00/3312/3/2/5
	Supporting document 5:
	Conveyance system: Materials and geotechnical investigation

5.2 TOPOGRAPHICAL SURVEYS AND MAPPING

The DWA directorate *Spatial and Land Information Management (SLIM)* provided the study team with topographical survey data of the proposed dam basins of Smithfield, Impendle and Baynesfield dams (including the relevant river reaches of the uMkhomazi and uMlaza rivers), as well as the areas around the full extent of the conveyance tunnel and the water treatment works at Umlaas Road, conducted as part of the *Mkomazi/Mooi-Mgeni Transfer Scheme Pre-feasibility Study* (Ninham Shand, 1999).

5.3 WATER REQUIREMENTS, DAM YIELD CHARACTERISTICS AND COSTS

For a full description of the reasoning behind the selection of the final size for Smithfield Dam based on (1) water requirements, (2) yield calculations, and (3) costs i.e. URV calculations, the reader is referred to the following reports:

- P WMA 11/U10/00/3312/2/2: Water requirements and return flows (AECOM, AGES, MMA, & Urban-Econ, 2014)
- *P WMA 11/U10/00/3312/2/3: Water resources yield assessment report* (AECOM, AGES, MMA, & Urban-Econ, 2014); and
- P WMA 11/U10/00/3312/3/1/3: Optimization of scheme configuration (AECOM, AGES, MMA, & Urban-Econ, 2014)

From report *P WMA 11/U10/00/3312/3/1/3: Optimization of scheme configuration* (AECOM, AGES, MMA, & Urban-Econ, 2014) it was concluded that the selected scheme will comprise of a *Smithfield Dam at site B with a storage volume equal to 31% of the MAR with a resultant FSL of 930 masI* (Final preferred layout included as Figure A.4 in Appendix A). As such, the *geotechnical investigations* as well as the *dam type selection* was based on this dam size, position and layout.

5.4 FLOOD HYDROLOGY

Flood absorption analyses were undertaken for the sizing of spillways and freeboard for the different dam types. The required freeboard above the full supply levels (FSL) of the various dam types was determined in accordance with the publication, *Interim Guidelines on Freeboard for Dams* (South African National Committee on Large Dams, 1990).

Flood frequency analyses were undertaken as part of the *uMkomazi/Mooi-Mgeni Transfer Scheme Pre-feasibility Study* (Ninham Shand, 1999) and were deemed adequate for undertaking flood absorption analyses for sizing the spillways and freeboard. The analysis results are summarised in Table 5.2.

Flood descriptions	Flood acronyms	Flood peaks (m ³ /s)		
100 year flood peak discharge	Q ₁₀₀	1 812		
200 year flood peak discharge	Q ₂₀₀	2 540		
Regional Maximum Flood	RMF	4 520		
Recommended Design Flood	RDF	2 540		
Safety Evaluation Flood	SEF	6 960		

Table 5.2:Flood peaks for the Smithfield Dam site (m³/s)

Spillway lengths were selected and the maximum water level in the dams for the safety evaluation flood (m^3/s) was obtained by routing various storm duration hydrographs through the reservoir. Table 5.3 summarises the results for these analyses.

Table 5.3:	Total required freeboard for different dam types - Smithfield Dam
	site

Dam Type	Spillway Type	C-Value	Spillway Length (m)	Total Required Freeboard (m)	Non- overspill Crest Level (masl)
RCC gravity dam	Ogee	2.18	300	5	935
Embankment dams (earthfill & rockfill)	Ogee	2.14	160	8	938

C relates to $Q = CLH^{3/2}$

Where:

Q = discharge

C = variable discharge coefficient

L = effective length of the crest

H = actual head being considered on the crest, including velocity of approach head

5.5 DAM CHARACTERISTICS

Mutual parameters (dam characteristics) used for the cost comparison of various dam types for the selected Smithfield Dam (main dam wall as well as saddle dam wall) as discussed above, are indicated in Table 5.4.

Table 5.4:Dam characteristics for	or the selected Smithfield Dam
-----------------------------------	--------------------------------

Parameter	Main dam Saddle dam			
Type of dam	Dependent on geotechnical investigations			
DWA classification	Category III			
Storage volume as a percentage of Mean Annual Runoff - MAR (%)	31			
Full supply level – FSL (masl)	930			
Minimum operating level – MOL (masl)	887.2			
Storage volume at FSL (million m³)	251			
Surface area at FSL (km ²)	7.52			
Catchment area (km ²)	2 054			
Crest level (masl)	935 masl for gravity type dams 938 masl for embankment type dams			
Maximum wall height (m)	80.1 masl for gravity type dams 83.1 masl for embankment type dams			
Maximum water depth (m)	75.1 masl for gravity type dams 75.1 masl for embankment type dams			
Crest length of wall (m)	1224 1180			
1:100 year yield (million m /a) (2012 in-catchment development levels)	241			
1:200 year yield (million m ³ /a) (2050 in-catchment development levels)	219			

5.6 GEOTECHNICAL INVESTIGATIONS

5.6.1 Materials investigations

a) Sources for the various types of material

Required materials for Smithfield Dam can be sourced on site from (1) borrow area A, (2) borrow area B, (3) borrow area C, (4) quarry I (left flank), (5) quarry II (plunge pool), (6) quarry III (spillway approach), (7) quarry IV (tunnel inlet), (8) the main dam excavation, or (9) the saddle dam excavation. The location of these can be seen on Figure A.6 in Appendix A.

Alternatively, if no sufficient material of a specific type is available on site, it can be (10) imported from nearby commercial sources. For this purpose, three commercial sources have been identified close to the Smithfield Dam site (see Table 5.5). In cases where sufficient materials are not available on site, transport costs to import the needed material from commercial sources are taken into account.

Name	Material source	Distance from Smithfield Dam site (km)
Midmar Crushers	Aggregates	51.5
Natal Crushers	Aggregates	83.5
NPC	Natural sand	153

Table 5.5: Summary of commercial sources close to the Smithfield Dam site

Table 5.6 and **Table 5.7** summarise the volumes of material available from the various sources (as defined and listed above) for an RCC and earthfill / rockfill dam respectively. Based on these a balancing exercise was conducted and construction costs estimated to determine the best dam type.

Table 5.6: Available material for Smithfield Dam – construction of an RCC

Material (source)		А	В	С	D	E	F	
		Material source)	Overburde n for soil: Organic topsoil	Clayey sand transported surface material	Completel y and highly weathered shales	Unweathered to moderately weathered shales	Highly and moderately weathered dolerite	Slightly weathered and unweathered dolerite
			Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
		(1) Borrow area A	120 000	800 000	0	0	50 000	0
		(2) Borrow area B	100 000	850 000	0	0	100 000	0
	-	(3) Borrow area C	0 (2)	0	0	0	0	0
		(4) Quarry I (Left flank)	0 (2)	20 000	600 000	600 000	140 000	2 600 000
æ	ateria	(5) Quarry II (Plunge pool)	0 (2)	0	0	0	0	0
RCC dai	lable m	(6) Quarry III (Spillway approach)	0 (2)	0	0	0	0	0
	Avai	(7) Quarry IV (Tunnel inlet)	0 (2)	7 000	110 000	13 500	0	0
		(8) Excavation: Main dam	0 (2)	120 000	210 000	0	62 000 ⁽¹⁾	0
		(9) Excavation: Saddle dam	0 (2)	0	11 000	0	0	0
		(10) Other	0 ⁽²⁾	0	0	0	0	0
		TOTAL	220 000	1 829 455	987 796	613 500	368 768	2 600 000

(1) Alluvial borders in clayey matrix

(2) Not taken into account

dam

Table 5.7:Available material for Smithfield Dam – construction of an
embankment dam

			Α	В	С	D	Е	F
Material (source)		Material (source)	Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely and highly weathered shales	Unweathered to moderately weathered shales	Highly and moderately weathered dolerite	Slightly weathered and unweathered dolerite
			Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
		(1) Borrow area A	120 000	800 000	0	0	50 000	0
		(2) Borrow area B	100 000	850 000	0	0	100 000	0
		(3) Borrow area C	0 (2)	0	0	0	0	0
		(4) Quarry I (Left flank)	0 (2)	20 000	600 000	600 000	140 000	2 600 000
dam	terial	(5) Quarry II (Plunge pool)	0 (2)	200 000	170 000	44 000	850 000	720 000
Inkment	able ma	(6) Quarry III (Spillway approach)	0 (2)	25 000	20 000	10 000	815 000	123 000
Emba	Avail	(7) Quarry IV (Tunnel inlet)	0 (2)	7 000	110 000	13 500	0	0
		(8) Excavation: Main dam	0 (2)	380 000	0	0	200 000 ⁽¹⁾	0
		(9) Excavation: Saddle dam	0 (2)	0	11 000	0	0	0
		(10) Other	0 (2)	0	0	0	0	0
		TOTAL	220 000	3 488 319	967 796	667 500	2 789 592	3 443 000

(1) Alluvial borders in clayey matrix

(2) Not taken into account

b) Excavation volumes from Quarry I

The slightly weathered and unweathered dolerite within *Quarry I* are overlain by shale that needs to be removed and:

- Stockpiled for later use;
- Transported to the identified waste disposal site as *spoil*; or
- Immediately used in either the embankments of the main or saddle dams.

As each of these options have a certain cost implication, this quarry was modelled in detail to determine the exact quantity of shale that would have to
be removed for any given quantity of dolerite needed. Refer to Appendix E for the quarry cross sections.

The quarry was opened up on the north-western side (coordinates -91295.014, 3 295 451.995 (LO31)) as the more competent dolerite material is nearer to the surface at this point. As material is required, the quarry was expanded in a south easterly direction towards the saddle dam along section E-E, as shown in **Figure E.19** in **Appendix E**. **Figure 5.1** presents the excavation volumes for dolerite and shales respectively for every cubic metre of original ground level surface area quarried.

Figure 5.1: Quarry I – Excavation volumes

Slopes, as summarised in **Table 5.8**, were assumed for excavation in the different materials of the quarry.

Table 5.8:Slopes assumed for excavation in Quarry I

Material	Slope
Overburden for soil: Organic topsoil	1V:2H
Clayey sand transported surface material	1V:2H
Completely and highly weathered shales	1V:2H
Unweathered to moderately weathered shales	1V:2H
Highly and moderately weathered dolerite	1V:0.7H
Slightly weathered and unweathered dolerite	1V:0.7H

c) Main conclusions

The main conclusions of the *materials investigations for sources of dam construction materials* can be summarised as follows:

- Sufficient clay was identified for the core of either a zoned earthfill embankment dam or an earthcore rockfill dam;
- Limited semi-pervious material was identified for the outer zones of a zoned earthfill embankment dam;
- Both (1) carbon-rich baked and (2) no-carbon-rich baked shales have been identified which will be sufficient for any kind of rockfill dam;
- A volume of 2.6 million m³ of good dolerite, i.e. slightly weathered and unweathered dolerite have been identified. However, this deposit is underlain by shale.

5.6.2 Geotechnical (foundation) investigations

a) Foundations of the dam and spillway structures

Excavation depths at borehole positions were recommended based on the results of the geotechnical investigation, i.e. seismic refraction surveys as well as rotary core drilling and Lugeon water pressure testing conducted along the centre line of Smithfield Dam (including main and saddle dam walls) and the spillway structure.

Table 5.9 to **Table 5.11** summarise the excavation depths for the various components of the different types of dams, as well as the spillway structure, based on the information as described above. Long-sections of these are provided in **Appendix E**, with the location of the various test pits and boreholes shown on **Figure A.7** and **Figure A.8** in **Appendix A**.

Table 5.9:

Borehole	Elevation	DCC dam	Earthfill dam		ECR dam		CFR dam	
No.	(masl)	RCC dam	Core	Shell	Core	Shell	Plinth	Shell
DLS 3	922.17	17.0	3.0	1.0	3.0	6.0	3.0	6.0
DL 1	916.23	23.0	10.6	0.5	10.6	10.3	10.6	10.3
DLS 2	914.34	30 +	8.4	0.7	8.4	8.4	8.4	8.4
DLS 1	904.25	14.0	4.0	0.3	4.0	3.0	4.0	3.0
DL 3	889.54	4.0	3.5	0.5	3.5	2.2	3.5	2.2
DL 4	879.25	2.0	2.0	0.5	2.0	1.5	2.0	1.5
DR 2	857.46	8.5	3.6	3.6	3.6	3.6	3.6	3.6
DR 1	857.32	10.0	10.0	2.5	10.0	5.0	10.0	5.0
DRS 1	884.58	11.0	1.5	1.1	1.5	4.5	1.5	4.5
DTS 1	888.42	8.0	3.0	0.6	3.0	5.2	3.0	5.2
DR 3	900.15	25.0	11.0	1.1	11.0	11.2	11.0	11.2
1004	901.20	13+	12.5	1.0	12.5	12.5	12.5	12.5
DRS 2	903.81	15.0	15.0	1.0	15.0	14.4	15.0	14.4
DR 4	909.44	25.0	7.5	0.5	7.5	7.5	7.5	7.5
DRS 3	925.13	18.0	3.5	0.9	3.5	3.2	3.5	3.2

Table 5.10:Excavation depths (m) for Smithfield Dam (saddle dam wall)based on geotechnical investigations

Borehole	Elevation (masl)	RCC dam	Earthfill dam		ECR dam		CFR dam	
No.			Core	Shell	Core	Shell	Plinth	Shell
SSS1	930.2	N/A	0.5	2	1.6	2	N/A	N/A
SES1	917.4	N/A	1.5	3.2	1.5	3.2	N/A	N/A
SES2	911.9	N/A	0.5	3	2	3	N/A	N/A
SES3	915.2	N/A	0.5	2.5	1.5	2.5	N/A	N/A

 Table 5.11:Excavation depths (m) for Smithfield Dam's spillway structure

 (concrete chute) based on geotechnical investigations

Borehole No.	Elevation (masl)	Concrete chute
DLS 3	922.17	10.5
DL 1	916.23	11.0
DLS 2	914.34	8.5
DLS 1	904.25	6.0
DL 3	889.54	4.0
DL 4	879.25	2.0
DR 2	857.46	8.5
DR 1	857.32	10.0
DRS 1	884.58	11.0
DTS 1	888.42	8.0
DR 3	900.15	15.0
1004	901.20	13+
DRS 2	903.81	14.5
DR 4	909.44	8.0
DRS 3	925.13	6.0

b) Main conclusions

The main conclusions of the *geotechnical investigations for the foundations of Smithfield Dam and the spillway structure* can be summarised as follows:

 Foundation depths in the central part of the valley are shallower and favours a roller compacted concrete (RCC) gravity concrete or composite dam (RCC gravity and embankment dam combination). However, the outer parts include significantly deeper excavations. This does not favour concrete gravity type dams.

5.7 OTHER PARAMETERS

5.7.1 Filters and transition layers

The width of filters and transition layers that were considered in the assessments are listed in Table 5.12.

Table 5.12:NOC widths, curtain grout spacing and width of filters and
transition layers for various dam types considered in cost
comparison

Parameter		Roller compacted concrete gravity dam (RCC)	Zoned earthfill embankment dam	Earth core rockfill dam (ECRD)	Concrete faced rockfill dam (CFRD)
NOC crest width (m)		8	8	8	8
Curtain grouting spacing (m)		2	2	2	2
	Rip rap	-	1	-	-
Filters and	Gravel protection / transition	-	2 * 0.4	2 * 1	2*2
transition layers (Thicknesses) (m)	Sand filter	-	1	2	-
	Chimney drain	-	2	-	-
	Blanket drain	-	0.6	-	-

5.7.2 Slopes

Slope stability analyses were conducted with the tested parameters for the different soil types from the geotechnical investigations to determine the optimal slopes of each of the various dam types. Parameters used in this exercise are summarised in Table 5.13. The results from the soil stability analyses are included in Appendix C, with the resultant slopes for the various dam types summarised in Table 5.14.

All slope stability factors conform to minimum requirements except for embankments constructed with dolerite which show shallow slips with lower safety factors. These factors are acceptable.

In addition, the interaction of Quarry I with the saddle embankment in terms of slope stability was noted. The layout drawings show that the upstream toe of the saddle embankment was placed 70 m from the top of the quarry's slope. It is proposed that slope protection on the quarry slope face nearest to the saddle embankment is used to accommodate this slope stability. This aspect must be refined in the detail design.

Material No.	Material type	Phi – Φ (°)	Cohesion – C (kPa)	Density (kg/m³)
A	Overburden for soil: Organic topsoil	26	23	1 300
В	Clayey sand transported surface material	26	23	1 730
С	Completely and highly weathered shales	35	0	2 049
D	Unweathered to moderately weathered shales	38	0	2 100
E	Highly and moderately weathered dolerite	36	0	2 100
F	Slightly weathered and unweathered dolerite	40	0	2 200
-	Undisturbed dolerite	40	100	2 720
-	Concrete	35	500	2 300

 Table 5.13:
 Engineering properties for the various material types

Table 5.14: Assumed slopes for various dam types considered in cost

comparison

Dam type	Upstream slope Downstream slop			
Roller compacted concrete gravity dam (RCC)	1(V):0.1(H)	1(V):0.8(H)		
Zoned earthfill embankment dam	1(V):3(H)	1(V):2.5(H)		
Earth core rockfill dam (ECRD)	1(V):1.8(H)	Zoning option 1&2: 1(V):1.75(H)		
Concrete faced rockfill dam (CFRD)	1(V):1.4(H)	 Zoning option 1: 1(V):1.4(H Zoning option 2: 1(V):2(H) Zoning option 3: 1(V):1.8(H 		

(1) Required to accommodate shear stability

6 SMITHFIELD DAM – ASSESSMENT <u>BEFORE</u> AND DURING GEOTECHNICAL INVESTIGATIONS

6.1 INTRODUCTION AND OBJECTIVE

The objective of this exercise was to consider various possible dam layouts and types for Smithfield Dam to guide the geotechnical investigations. The following aspects were considered:

- Construction costs of excavations;
- Layouts of spillways and chutes; and
- Social and environmental aspects.

6.2 DAM TYPES

Embankment and concrete gravity dam types were considered in this report. However, the concrete gravity and the embankment dams share the same centre lines, and therefore the scope for the geotechnical investigation would be the same for both, and so the differentiating factor for the embankment dam would be the spillway layout and position.

6.3 SPILLWAY LAYOUTS

Three spillway layout options were considered.

6.3.1 Option 1

The first option investigated had a side channel spillway discharging into a concrete lined chute, next to the main dam. The length of the chute was shortened by discharging the water into a small stream. The layout is shown in **Figure A.1** in **Appendix A**.

6.3.2 Option 2

The second option investigated had a side channel spillway and concrete chute next to the saddle wall and discharging with a ski jump into the uMkhomazi River from a high level. The layout of this option is shown in **Figure A.2** in **Appendix A**.

6.3.3 Option 3

The third option investigated was a side spillway at the escarpment with a long approach channel from the side of the saddle wall and a radially shaped ogee weir. This layout is shown in **Figure A.3**.

6.4 ASPECTS OF THE CONSTRUCTION COSTS

6.4.1 Costs for the excavation

Section 4.3 indicates all costs for forming the embankments. The excavation material for the spillway approach and chute was assumed to be used to form the embankments, and therefore no additional costs were allowed for other excavations in determining the cost of the spillways.

An important requirement from the geotechnical investigations was identified, namely to determine if the material in the spillway approach and chute will be acceptable in terms of quality and quantity for the forming of an embankment.

6.4.2 Costs for the spillway and chute

The spillway and chute costs for each option were determined for comparison purposes.

6.4.3 Costs for the embankment

All other costs excluding the spillway and excavation costs are common costs in this comparison.

6.5 SOCIAL AND ENVIRONMENTAL ASPECTS

The social and environmental aspects of the spillways were evaluated on the following main elements of (1) safety of people, (2) the visual impact on the environment and (3) the effective environmental footprint. A description of these elements follows:

6.5.1 Safety of people

A deep excavation for a spillway close to dwellings is much less favourable than a shallower excavation away from people. The size of the footprint of the excavation influences the ease of safeguarding the excavation.

6.5.2 Effective environmental footprint

The larger the footprint of the excavation the larger the effect will be on the physical environment. The footprint of the excavation should therefore be as small as possible.

6.6 COMPARISON OF OPTIONS

Aspects as discussed in the preceding section were evaluated by allocating a value of 1 to 10 for each. A score of 1 is the least favourable and, on the other hand, a score of 10 is the most favourable option. These are summarised in **Table 6.1**.

Table 6.1: Evaluation of different dam layouts for Smithfield Dam

Armant		Score of options out of a possible 10				
Aspect		Option 1*	Option 2*	Option 3*		
Cost						
	Score	4	8	4		
Excavations	Comment	Medium quantity of material available for embankment forming.	Large quantity of material available for embankment forming. Long approach area.	Medium quantity of material available for embankment forming.		
	Score	5	8	3		
Chute	Comment	Medium length of chute.	Very short length of spillway and chute.	Longer length of chute than option 1 and will have topographical challenges.		
Sub-Total		9 16		7		
Social and env	vironmental	aspects				
	Score	8	2	5		
Safety	Comment	Chute not near people.	Spillway has very deep excavations over a long length near people.	Chute has shorter distance than Option 1, but near people and also deep excavation.		
	Score	7	2	5		
Visual	Comment	Spillway smaller than option 2.	Spillway and excavations will scar the area.	Spillway not as large as Option 2.		
	Score	3	2	3		
Footprint	Comment	A large section of the hill will be demolished to create the approach.	Excavated footprint will be the largest of the options.	The approach will also have a deep excavation.		
Sub-Total		18	6	13		
TOTAL		27	22	20		

*For definition of the options please refer to Section 6.3

Based on the above comparisons the following were revealed:

- **Option 2** will have the lowest cost if the material discovered in this spillway area is of good embankment forming quality;
- Option 1 could be the best safeguarded and provides the lowest safety risk;
- Option 1 scores the best on cost and social and environmental aspects;
- Option 2 scores the second best on cost and social and environmental aspects.

6.7 RECOMMENDATION

The following interim recommendations for design were thus made based on the assessment at this stage:

- The geotechnical investigations must determine the quality and quantity of material that could be obtained from excavations for the *Option 1* spillway layout;
- The erodibility of the stream for the discharge of the *Option 1* spillway layout must be determined during a site visit; and
- **Option 1** must be investigated for quality and quantity of material. The area downstream of the chute must also be investigated for a possible plunge pool. The stabilisation of the discharges from the spillway in the downstream area should be considered during the tender design of the spillway, to ensure that they do not erode the outlet works. In addition, hydraulic model studies should be undertaken during tender design.

6.8 **DURING GEOTECHNICAL INVESTIGATIONS**

6.8.1 Drilling programme

The above philosophy was used, but the initial drilling was done at Option 2 to determine the quantity and quality of material available in the approach channel. If the quality and the quantity of material were adequate, further investigations could be carried out at this option and the material could outweigh the negative impacts of this option. The drilling at Option 2 could also direct further investigations into Option 3 as the area is close to Option 2.

If the materials at Option 2 were not adequate Option 1 will then be investigated.

6.8.2 Findings during geotechnical investigations

The initial drilling showed that no dolerite existed in the approach channel of Option 2, but that dolerite was present at the chute and approach channel of Option 1. Option 3 is in close proximity of Option 2 and the same results were extrapolated for this option.

6.8.3 Results of interim geotechnical drilling investigation

The initial core drilling directed all further geotechnical investigations to Option 1.

7 SMITHFIELD DAM – ASSESSMENT AFTER GEOTECHNICAL INVESTIGATIONS

7.1 INTRODUCTION AND OBJECTIVE

With information available on the *construction materials available on site* as well as the *foundation conditions along the centre line of Smithfield Dam* (main dam wall as well as saddle dam wall) the objective of this exercise was to compare costs for various dam types to (1) select the optimal dam type, and ultimately to (2) select the best scheme. In order to do this a balancing exercise was conducted to ensure optimal use of available materials on site which also influenced the estimation of costs. This balancing exercise took into account the following:

- The total volume of material of each specific type *required* for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works;
- The total volume of material of each specific type *available* on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C;
- The total volume of material of each specific type that have to be *imported from a commercial source*;
- The total volume of material of each specific type that need to be *stockpiled* for later use.
- The total volume of material of each specific type that need to be *spoiled* in the designated waste disposal site;
- The total volume of material of each specific type that need to be used in the forming of the specific dam type;
- The total volume of material of each specific type that is kept *undisturbed* in the respective quarries or borrow areas.

During the construction materials investigation a "safety factor" is built in whereby twice the volume of material required for construction should be proved during the site investigation. However, a decision was made that, for the purpose of the balancing exercise, the *required material* was balanced against the *available material* on a one-to-one basis. Table 7.2 to Table 7.9 provide a summary of the material balance for each of the dam type options, which also give an indication of

the volume of material of each specific type that remains within the respective quarries or borrow areas (i.e. that is kept undisturbed/untouched).

7.2 DAM TYPES

Based on the information received from the geotechnical and materials investigations, dam types that were considered for Smithfield Dam are summarised in **Table 7.1**. Typical cross-sections for each of the dam types listed are included in **Appendix D**.

Option	Continu	Dam type		
No.	Section	Main Dam	Saddle Dam	
1	7.5.1	Roller compacted concrete (RCC) gravity	Zoned earthfill embankment dam	
2	7.5.2	Earth core rockfill dam (zoning option 1)	Zoned earthfill embankment dam	
3	7.5.3	Concrete faced rockfill dam (zoning option 1)	Zoned earthfill embankment dam	
4	7.5.4	Zoned earth core rockfill dam (zoning option 2)	Zoned earthfill embankment dam	
5	7.5.5	Zoned earth core rockfill dam (zoning option 2)	Zoned earth core rockfill dam (zoning option 2)	
6	7.5.6	Composite dam (RCC gravity and zoned ECRD (zoning option 2))	Zoned earthfill embankment dam	
7	7.5.7	Zoned concrete faced rockfill dam (option 1) (zoning option 2)	Zoned earthfill embankment dam	
8	7.5.8	Zoned concrete faced rockfill dam (option 2) (zoning option 3)	Zoned earthfill embankment dam	
9*	7.5.9	Zoned earthfill embankment dam	Zoned earthfill embankment dam	
10*	7.5.9	Composite dam (RCC with zoned ECRD on the one flank and zoned earthfill embankment dam on the other)	Zoned earthfill embankment dam	

 Table 7.1:
 Dam type options investigated for Smithfield Dam

*These options were identified initially but not considered further, for reasons described in **Section 7.5.9**.

7.3 DAM SIZE AND LAYOUT

The dam size and layout were based on a *Smithfield Dam at site B with a* storage volume equal to 31% of the MAR with a resultant FSL of 930 masl as summarised in Sections 5.2 and 5.4. Further to this the *Option 1* spillway was selected as described in Section 6.

7.4 **PRIORITY SEQUENCES**

As mentioned in **Section 5.6.1** materials for the construction of Smithfield Dam can be sourced on site from (1) borrow area A, (2) borrow area B, (3) borrow area C, (4) quarry I (left flank), (5) quarry II (plunge pool), (6) quarry III (spillway approach), (7) quarry IV (tunnel inlet), (8) the main dam excavation, or (9) the saddle dam excavation. Alternatively, if sufficient material of a specific type is not available on site, it can be (10) imported from nearby sources.

For the purpose of selecting the optimal dam type, different priority sequences for the sourcing of materials were adopted for the various dam types. The combination of main dam and saddle dam were taken into account for this investigation, with various different combinations considered. These are discussed in **Section 7.4.1** to **7.4.4**.

7.4.1 Roller compacted concrete (RCC) gravity dam

For the *roller compacted concrete (RCC) gravity dam* material was sourced in the following priority sequence. If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

- Quarry IV (tunnel inlet);
- Main dam excavation;
- Saddle dam excavation;
- Quarry I (left flank); and
- Commercial source.

7.4.2 Zoned earthfill embankment dam

For the *zoned earthfill embankment dam* material was sourced in the following priority sequence. If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

- Quarry IV (tunnel inlet);
- Main dam excavation;
- Saddle dam excavation;
- Quarry II (plunge pool);
- Quarry III (spillway approach);
- Borrow area A;

- Borrow area B;
- Borrow area C; and
- Commercial source.

7.4.3 Earth core rockfill dam (ECRD)

For the *earth core rockfill dam* material was sourced in the following priority sequence. If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

- Quarry IV (tunnel inlet);
- Main dam excavation;
- Saddle dam excavation;
- Quarry II (plunge pool);
- Quarry III (spillway approach);
- Quarry I (left flank); and
- Commercial source.

7.4.4 Concrete faced rockfill dam (CFRD)

For the *concrete faced rockfill dam* material was sourced in the following priority sequence. If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

- Quarry IV (tunnel inlet);
- Main dam excavation;
- Saddle dam excavation;
- Quarry II (plunge pool);
- Quarry III (spillway approach);
- Quarry I (left flank); and
- Commercial source.

7.5 COMPARISON IN TERMS OF CONSTRUCTION COST

Material quantities for all infrastructure components and for each dam option based on centre line natural ground levels (NGL) were calculated using the cost model described in Section 2. Following in Sections 7.5.1 to 7.5.9 are a description of each of the dam types investigated, with a summary of the cost comparison included in Section 7.5.10. All options investigated are summarised in Table 7.1 and the results of the balancing exercise are included in Appendix F and **Appendix G**. This balancing exercise (and cost of the determined materials) considered the material required for the main dam and the saddle dam,

7.5.1 Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam -Zoned earthfill embankment dam

a) Main dam

For this option, material utilised within the main dam will firstly be provided from *Quarry IV*, after which the stockpiled material from the *main dam and saddle dam excavations* will be used prior to *Quarry I* being opened. As shown in **Table 7.2** approximately 1 123 593 m³ of slightly weathered and unweathered dolerite material will be required as aggregate to construct the main dam, diversion works and intake and outlet works. Fortunately, the full volume of this material can be sourced from all the various on-site sources. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used within the saddle dam.

b) Saddle dam

For this option, sufficient impervious and pervious material will be obtained from the (1) the *main dam excavation* as well as (2) *Quarry I* where *clayey sand transported surface material* and *completely and highly weathered shale* will have to be removed and stockpiled to get to the underlying dolerites needed for the construction of the main dam. As such, there is no need to open up either borrow area A or B. Sand for the blanket and chimney drains will be sourced from *NPC sand* at the Umkomaas River mouth and transported 153 km to site.

c) General

 Table 7.2 provides a summary of the balancing of materials for Option 1.

As indicated in this table there are 6% more of the clayey sand transported surface material, 59% more of the completely and highly weathered shale, and 131% more of the slightly weathered and unweathered dolerite, available from on-site sources (i.e. from the borrow areas, quarries and dam excavations) than what is *required* for this option.

Although not twice the volume of material required in the case of the *clayey* sand transported surface material and the completely and highly weathered shale, it was deemed sufficient.

		Α	В	С	D	E	F	G
Material use		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
То	tal required ⁽¹⁾	0	336 835	861 785	0	0	1 123 593	86 544
Av (2)	ailable on site	0	358 235	1 369 280	613 500	310 960	2 600 000	0
Im	ported ⁽³⁾	0	0	0	0	0	0	86 544
То	tal available	0	358 235	1 369 280	613 500	310 960	2 600 000	86 544
	Stockpiled ⁽⁴⁾	0	336 835	861 785	0	0	1 123 593	86 544
	Spoiled ⁽⁵⁾	0	21 400	112 532	226 404	310 960	0	0
ion	Dam forming	0	336 835	861 785	0	0	1 123 593	86 544
Act	Surplus ⁽⁷⁾	0	0	394 963	387 096	0	1 476 407	0
	Percentage remaining (%)	-	6	59	-	-	131	-
	TOTAL	0	358 235	1 369 280	613 500	310 960	2 600 000	86 544

Table 7.2:	Balancing	of materials	for Option 1
------------	-----------	--------------	--------------

(1) The total volume of material **required** for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

- (3) The total volume of material that have to be **imported from a commercial source**.
- (4) The total volume of material that need to be **stockpiled** for later use.
- (5) The total volume of material that need to be **spoiled** in the designated waste disposal site.
- (6) The total volume of material that need to be used in the forming of the specific dam type.
- (7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7.5.2 Option 2: Main dam - Earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam

a) Main dam

For this option the material utilised within the main dam, i.e. primarily *slightly weathered and unweathered dolerite* as rockfill, will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III*, prior to opening *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

However, sufficient dolerite material cannot be obtained from the available on site sources to construct a complete outer shell with *slightly weathered and unweathered dolerite material* and therefore dolerite material will need to be imported from a commercial quarry. For this purpose 178 279 m³ of this material will be sourced and transported from *Midmar Crushers,* which is 51.5 km from the Smithfield Dam site.

Similarly, with all on-site sources opened up as mentioned above there will also not be sufficient clay core material and therefore the deficient of clay material will be obtained from *Borrow Area A*.

Sand for the transition zones will be obtained from *NPC sand* at the Umkomaas River mouth and transported 153 km to site.

b) Saddle dam

For this option sufficient impervious and pervious material will be opened up by the excavations needed for the main dam, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III* and *Quarry I*, to construct a zoned earthfill embankment dam. Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site.

c) General

 Table 7.3 provides a summary of the balancing of materials for Option 2.

As indicated in this table there are 50% more of the clayey sand transported surface material and 15% more of the completely and highly weathered shales available from on-site sources (i.e. from the borrow areas, quarries and dam

excavations) than what is *required* for this option. Although not twice the volume of material required, it was deemed sufficient.

However, as mentioned above there is not sufficient dolerite material to construct the complete outer shell with slightly weathered and unweathered dolerite material and therefore it is shown that *0% more* of this material is available from on-site sources than what is required, as a portion of this already needs to be imported from a commercial quarry.

In addition to this, should the estimated volume of this material of $3\,912\,823\,\text{m}^3$ not be found on site during construction, further material should be sourced and transported from *Midmar Crushers* which will significantly increase the construction cost of this option.

Table 7.3:	Balancing	of materials	for option 2
------------	-----------	--------------	--------------

Material use		Α	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m ³)	Volume (m³)	Volume (m³)	Volume (m³)
Total required		0	1 250 373	861 785	0	0	3 912 823	178 279
Available on site ⁽²⁾		120 000	1 872 852	992975	667500	2 259 300	3 443 000	0
Imported ⁽³⁾		0	0	0	0	0	469 823	178 279
Tot	al available	120 000	1 872 852	992 975	667 500	2 259 300	3 912 823	178 279
	Stockpiled (4)	0	1 250 373	861 785	0	0	3 912 823	178 279
	Spoiled ⁽⁵⁾	25 806	0	131 190	667 500	2 209 300	0	0
ion	Dam forming ⁽⁶⁾	0	1 250 373	861 785	0	0	3 912 823	178 279
Acti	Surplus ⁽⁷⁾	94 194	622 479	0	0	50 000	0	0
	Percentage remaining (%)	-	50	15	-	-	0	0
	TOTAL	120 000	1 872 852	992 975	667 500	2 259 300	3 912 823	178 279

(1) The total volume of material **required** for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material **available on site** from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

- (3) The total volume of material that have to be **imported from a commercial source**.
- (4) The total volume of material that need to be **stockpiled** for later use.
- (5) The total volume of material that need to be **spoiled** in the designated waste disposal site.
- (6) The total volume of material that need to be **used in the forming of the specific dam type**.
- (7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7.5.3 Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam

a) Main dam

For this option the primary material utilised within the main dam is rockfill, i.e. *primarily slightly weathered and unweathered dolerite*, will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III*, prior to opening *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

However, with all the on-site sources, there is still insufficient dolerite material to construct the complete main dam with *slightly weathered and unweathered dolerite material* and therefore dolerite material will need to be imported from a commercial quarry. For this purpose 584 180 m³ of this material will be sourced and transported from *Midmar Crushers,* which is 51.5 km from the Smithfield Dam site. The aggregate for the concrete slab will be obtained from *Quarry I*.

b) Saddle dam

For this option sufficient impervious and pervious material will be opened up by the excavations needed for the main dam, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III* and *Quarry I*, to construct a zoned earthfill embankment dam. As such, *Borrow Area A* will not have to be opened up in this case.

Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site.

c) General

Table 7.4 provides a summary of the balancing of materials for option 3.

As indicated in this table there are *170% more* of the clayey sand transported surface material and *15% more* of the completely and highly weathered shales available from on-site sources (i.e. from the borrow areas, quarries and dam excavations) than what is *required* for this option. Although not twice the volume of material required, it was deemed sufficient.

However, as mentioned above there is not sufficient dolerite material to construct the complete outer shell with slightly weathered and unweathered dolerite material and therefore it is shown that *0% more* of this material is available from on-site sources than what is required, as a portion of this already needs to be imported from a commercial quarry.

In addition to this, should the estimated volume of this material of $3\,443\,000$ m³ not be found on site during construction, further material should be sourced and transported from *Midmar Crushers*, which will significantly increase the construction cost of this option.

Material use		А	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Total required		0	336 835	992 975	0	0	4 027 180	86 544
Available on site ⁽²⁾		0	908 551	992 975	667 500	2 128 376	3 443 000	0
Imported ⁽³⁾		0	0	0	0	0	584 180	86 544
Total available		0	908 551	992 975	667 500	2 168 376	4 027 180	86 544
	Stockpiled	0	336 835	861 785	0	0	4 027 180	86 544
	Spoiled ⁽⁵⁾	0	571 716	131 190	667 500	2 128 376	0	0
ion	Dam forming ⁽⁶⁾	0	336 835	861 785	0	0	4 027 180	86 544
Acti	Surplus ⁽⁷⁾	0	0	0	0	0	0	0
	Percentage remaining (%)	-	170	15	-	-	0	0
	TOTAL	0	908 551	992 975	667 500	2 168 529	4 027 180	86 544

(1) The total volume of material **required** for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

- (3) The total volume of material that have to be **imported from a commercial source**.
- (4) The total volume of material that need to be **stockpiled** for later use.
- (5) The total volume of material that need to be **spoiled** in the designated waste disposal site.
- (6) The total volume of material that need to be **used in the forming of the specific dam type**.
- (7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7.5.4 Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam

a) Main dam

In order to optimise the utilisation of materials available on site, an internal zone of *unweathered to moderately weathered shales* can be used overlain by a layer of *slightly weathered and unweathered dolerite*. This will reduce the cost of having to import the shortfall of *slightly weathered and unweathered dolerite* but rather the *unweathered to moderately weathered shales* available on site can be used, which is in the order of 667 500 m³ of material, before using the *slightly weathered and unweathered dolerite*. Therefore, no additional material will need to be imported from a commercial source.

Similar to Option 2 described above, the material utilised within the main dam will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II*, *Quarry III*, and lastly *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

With all on-site sources opened up as mentioned above there will not be sufficient clay core material and therefore the deficient of clay material will be obtained from *Borrow Area A*.

Sand for the transition zones will be obtained from *NPC sand* at the Umkomaas River mouth and transported 153 km to site.

b) Saddle dam

For this option sufficient impervious and pervious material will be opened up by the excavations need for the main dam, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III* and *Quarry I*, to construct a zoned earthfill embankment dam. Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site.

c) General

Table 7.5 provides a summary of the balancing of materials for option 4.

As indicated in this table there are 50% more of the clayey sand transported surface material, 15% more of the completely and highly weathered shales and 15% more of the unweathered to moderately weathered shales available from on-site sources (i.e. from the borrow areas, quarries and dam excavations) than what is *required* for this option. Although not twice the volume of material required, it was deemed sufficient.

However, when it comes to the weathered and unweathered dolerite material there are only *2% more* of this material available from on-site sources than what is required. Therefore, should the estimated volume of 3 443 000 m³ not be found on site during construction the additional material should be sourced and transported from *Midmar Crushers* (51.5 km from the Smithfield Dam site) which will significantly increase the construction cost of this option.

			-					
		Α	В	С	D	E	F	G
Material use		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Total required		0	1 259 626	861 785	581 935	0	3 364 209	180 345
Available on site ⁽²⁾		120 000	1 891 924	992 975	667 500	2 268 694	3 443 000	0
Imported ⁽³⁾		0	0	0	0	0	0	180 345
Tot	tal available	120 000	1 891 924	992 975	667 500	2 268 694	3 443 000	180 345
	Stockpiled	0	1 259 626	861 785	581 935	0	3 364 209	180 345
	Spoiled ⁽⁵⁾	120 000	0	0	85 565	2 268 694	0	0
Action	Dam forming ⁽⁶⁾	0	1 259 626	861 785	581 935	0	3 364 209	180 345
	Surplus ⁽⁷⁾	0	632 298	131 190	0	0	78 791	
	Percentage remaining (%)	-	50	15	15	-	2	-
	TOTAL	120 000	1 891 924	992 975	667 500	2 268 694	3 443 000	180 345

Table 7.5: Balancing of materials for option 4

(1) The total volume of material **required** for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

- (3) The total volume of material that have to be **imported from a commercial source**.
- (4) The total volume of material that need to be **stockpiled** for later use.
- (5) The total volume of material that need to be **spoiled** in the designated waste disposal site.
- (6) The total volume of material that need to be **used in the forming of the specific dam type**.
- (7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7.5.5 Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam – Zoned earth core rockfill dam

a) Main dam

In order to optimise the utilisation of materials available on site, an internal zone of *unweathered to moderately weathered shales* can be used overlain by a layer of *slightly weathered and unweathered dolerite*. This will reduce the cost of having to import the shortfall of *slightly weathered and unweathered dolerite* but rather use the total volume of *unweathered to moderately weathered shales* available on site. This comprises of 667 500 m³ of material, before using the *slightly weathered and unweathered dolerite*.

Similar to option 2 described above the material utilised within the main dam will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II*, *Quarry III*, and lastly *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

However, with all the on-site sources, there will not be sufficient dolerite material to construct the portion of the main dam with *slightly weathered and unweathered dolerite material* and therefore dolerite material will still need to be imported from a commercial quarry.

With all on-site sources opened up as mentioned above there will also not be sufficient clay core material and therefore the deficient of clay material will be obtained from *Borrow Area A*.

Sand for the transition zones will be obtained from *NPC sand* at the Umkomaas River mouth and transported 153 km to site.

b) Saddle dam

Similar for the main wall as described above the saddle wall will also comprise an internal zone of *unweathered to moderately weathered shales* overlain by a layer of *slightly weathered and unweathered dolerite*. In order to optimise the utilisation of materials available on site. This will reduce the cost of having to import the shortfall of *slightly weathered and unweathered dolerite* but rather use the total volume of *unweathered to moderately* *weathered shales* available on site. This comprises of 659 317 m³ of material, before using the *slightly weathered and unweathered dolerite.*

The material utilised within the saddle dam will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II*, *Quarry III*, and lastly *Quarry I* as this is opened up for the construction of the main wall. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

However, with all this on-site sources there will not be sufficient dolerite material to construct the portion of the saddle dam with *slightly weathered and unweathered dolerite material* and therefore dolerite material will still need to be imported from a commercial quarry.

With all on-site sources opened up as mentioned above there will also not be sufficient clay core material and therefore the deficient of clay material will be obtained from *Borrow Area A* as this is opened up for the construction of the main wall.

Sand for the transition zones will be obtained from *NPC* sand at the Umkomaas umkomaas River mouth and transported 153 km to site.

c) General

 Table 7.6 provides a summary of the balancing of materials for option 5.

As indicated in this table there are **68% more** of the clayey sand transported surface material available from on-site sources (i.e. from the borrow areas, quarries and dam excavations) than what is **required** for this option. Although not twice the volume of material required, it was deemed sufficient.

However, when it comes to the *unweathered to moderately weathered shales* and *slightly weathered and unweathered dolerite material,* there are only 1% and 0% more of this material respectively available from on-site sources than what is required (as a portion of this already needs to be imported from a commercial quarry). Therefore, should the estimated volumes not be found on site during construction, the additional material should be sourced and transported from commercial quarries which will significantly increase the construction cost of this option.

			_		_	_	_	
		A	В	С	D	E	F	G
Material use		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m ³)
Тс	tal required ⁽¹⁾	0	1 128 614	0	659 317	0	3 887 288	197 319
Available on site		120 000	1 891 924	1 048 650	667 500	2 268 694	3 443 000	0
Imported ⁽³⁾		0	0	0	0	0	444 288	197 319
Тс	tal available	120 000	1 891 924	1 048 650	667 500	2 268 694	3 887 288	197 319
	Stockpiled ⁽⁴⁾	0	1 128 614	0	659 317	0	3 887 288	197 319
	Spoiled ⁽⁵⁾	14 500	0	952 074	8 183	2 268 694	0	0
ion	Dam forming	0	1 128 614	0	659 317	0	3 887 288	197 319
Act	Surplus ⁽⁷⁾	105 500	763 310	96 576	0	0	0	0
	Percentage remaining (%)	-	68	-	1	-	0	-
	TOTAL	120 000	1 891 924	1 048 650	667 500	2 268 694	3 887 288	197 319

Table 7.6: Balancing of materials for option 5

The total volume of material required for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

(3) The total volume of material that have to be imported from a commercial source.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be **used in the forming of the specific dam type**.

(7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7.5.6 Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam -Zoned earthfill embankment dam

a) Main dam

Due to the poor foundation conditions on the left and right flanks a complete roller compacted concrete (RCC) gravity dam will require extremely deep excavations on the sides that would result in very high costs. Therefore, for this option, a composite dam comprising of a central spillway section of roller compacted concrete and an earthcore rockfill dam on both the left and right flanks will pose a much cheaper option. The length of the central spillway RCC section will comprise the length of the spillway section plus for each flank a concrete section comprising the height of the embankment multiplied by the respective embankment slope plus a fifty metre section that extends into the embankment.

For the material used within the central spillway section of the main dam will firstly be provided from *Quarry IV*, where after the stockpiled material from the *main dam and saddle dam excavations* will be used before *Quarry I* is opened up. As shown in Table 7.7 approximately 2 619 932 m³ of *slightly weathered and unweathered dolerite material* will be required as aggregate to construct the main dam, diversion works and intake and outlet works. Fortunately, the full volume of this material can be sourced from all the various on-site sources. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

On the other hand, material for the flanks, i.e. *primarily slightly weathered and unweathered dolerite* as rockfill, will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, prior to opening *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

In addition, the clay core material will be obtained from the *main dam and saddle dam excavations* and the deficient will be obtained from *Borrow area A*. Sand for the transition zones will be obtained from *NPC sand* at the uMkhomazi River mouth and transported 153 km to site.

b) Saddle dam

For this option sufficient impervious and pervious material will be opened up by the excavations needed for the main dam, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry I*, and *Borrow Area A* to construct a zoned earthfill embankment dam. Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site. However, as most of the *slightly weathered and unweathered dolerite* material will be used in the main wall this material needed in the saddle wall for the rip-rap and gravel layer will need to be sourced and transported from *Midmar Crushers* which is 51.5 km from the Smithfield Dam site.

c) General

 Table 7.7 provides a summary of the balancing of materials for option 6.

As indicated in this table there are *109% more* of the clayey sand transported surface material, *0.5% more* of the completely and highly weathered shales, and *47% more* of the slightly weathered and unweathered dolerite, available from on-site sources (i.e. from the borrow areas, quarries and dam excavations) than what is *required* for this option.

Although not twice the volume of material required in the case of the *completely and highly weathered shales* and the *unweathered to moderately weathered shales*, it was deemed sufficient.

However, as mentioned above there is not sufficient dolerite material to construct the complete main dam with slightly weathered and unweathered dolerite material and therefore it is shown that *0% more* of this material is available from on-site sources than what is required, as a portion of this already need to be imported from a commercial quarry.

In addition to this, should the estimated volume of this material of $2600\ 000\ m^3$ not be found on site during construction, further material should be sourced and transported from *Midmar Crushers* which will significantly increase the construction cost of this option.

Table 7.7:Balancing of materials for option 6

Material use		А	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Тс	otal required ⁽¹⁾	0	769 376	861 785	416 351	0	2 619 932	136 992
Available on site		120 000	1 607 065	865 883	613 500	542 287	2 600 000	0
Imported ⁽³⁾		0	0	0	0	0	19 932	136 992
Тс	otal available	120 000	1 607 065	865 883	613 500	542 287	2 619 932	136 992
	Stockpiled ⁽⁴⁾	0	769 376	861 785	416 351	0	2 619 932	136 992
	Spoiled ⁽⁵⁾	20 400	0	0	197 149	491 772	0	0
ion	Dam forming	0	769 376	861 785	416 351	0	2 619 932	136 992
Act	Surplus ⁽⁷⁾	99 600	837 688	4 098	0	50 515	0	0
	Percentage remaining (%)	-	109	0.5	47	-	0	-
	TOTAL	0	1 607 065	865 883	613 500	0	2 619 932	136 992

The total volume of material required for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

(3) The total volume of material that have to be **imported from a commercial source**.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be **used in the forming of the specific dam type**.

(7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7-21

7.5.7 Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddle dam - Zoned earthfill embankment dam

a) Main dam

In order to optimise the available material on site, a downstream toe consisting of *highly and moderately weathered dolerite* was used. As such approximately 1 488 042m³ of the 2 196 533 m³ of this material available on site can be used and therefore do not need to be spoiled. Also, this option has the additional advantage that extra *slightly weathered and unweathered dolerite* does not need to be imported. However, in order to use this material the downstream slope of the main dam had to be adjusted to 1:2 (V:H).

For this option the material utilised within the main dam as rockfill, i.e. primarily *slightly weathered and unweathered dolerite* and *highly and moderately weathered dolerite*, will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III*, prior to opening *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam. The aggregate for the concrete slab will be obtained from *Quarry I*.

b) Saddle dam

For this option sufficient impervious and pervious material will be available from the main dam excavations, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III* and *Quarry I*, to construct a zoned earthfill embankment dam. As such, *Borrow Area A* will not have to be opened up in this case.

Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site.

c) General

 Table 7.8 provides a summary of the balancing of materials for option 7.

As indicated in this table there are 211% more of the clayey sand transported surface material, 15% more of the completely and highly weathered shales, and 48% more of the highly and moderately weathered dolerite, available from on-site sources (i.e. from the borrow areas, quarries and dam excavations)

than what is *required* for this option. Although not twice the volume of material required, it was deemed sufficient.

However, when it comes to the weathered and unweathered dolerite material there are only *3% more* of this material available from on-site sources than what is required. Therefore, should the estimated volume of 3 443 000 m³ not be found on site during construction; additional material should be sourced and transported from *Midmar Crushers* (51.5 km from the Smithfield Dam site) which will significantly increase the construction cost of this option.

Table 7.8:Balancing of materials for option 7

Material use		А	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Тс	otal required ⁽¹⁾	0	336 835	861 785	0	1 488 042	3 351 600	86 544
Available on site		0	1 046 932	992 975	667 500	2 196 533	3 443 000	0
Imported ⁽³⁾		0	0	0	0	0	0	86 544
Тс	otal available	0	1 046 932	992 975	667 500	2 196 533	3 443 000	86 544
	Stockpiled ⁽⁴⁾	0	336 835	861 785	0	1 488 042	3 351 600	86 544
	Spoiled ⁽⁵⁾	0	710 097	131 190	667 500	708 492	0	0
ion	Dam forming	0	336 835	861 785	0	1 488 042	3 351 600	86 544
Act	Surplus ⁽⁷⁾	0	0	0	0	0	91 400	
	Percentage remaining (%)	-	211	15	-	48	3	-
	TOTAL	0	1 046 932	992 975	667 500	2 196 533	3 443 000	86 544

(1) The total volume of material **required** for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

(3) The total volume of material that have to be imported from a commercial source.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be **used in the forming of the specific dam type**.

(7) The total volume of surplus material that is kept **undisturbed** in the respective quarries or borrow areas.

7-24

7.5.8 Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddle dam - Zoned earthfill embankment dam

a) Main dam

In order to optimise the available material on site, a downstream toe consisting of *unweathered to moderately weathered shales* was used. As such approximately 598 366 m³ of the 667 500 m³ of this material available on site can be used. However, in order to optimise the downstream slope a portion of this material will still need to be spoiled. The downstream slope of the main dam was adjusted to 1:1.8 (V:H) for this purpose.

For this option the material utilised within the main dam as rockfill, i.e. primarily *slightly weathered and unweathered dolerite* and *unweathered to moderately weathered shales*, will firstly be obtained (in this order) from *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III*, prior to opening *Quarry I*. Material quarried that is not needed in the forming of the main dam will either be taken to the identified waste disposal site or used in the saddle dam.

However, with all this on-site sources there will still not be sufficient dolerite material to construct the remaining portion of the main dam with *slightly weathered and unweathered dolerite material* and therefore dolerite material will need to be imported from a commercial quarry. For this purpose 550 439 m³ of this material will be sourced and transported from *Midmar Crushers* which is 51.5 km from the Smithfield Dam site. The aggregate for the concrete slab will be obtained from *Quarry I*.

b) Saddle dam

For this option sufficient impervious and pervious material will be opened up by the excavations needed for the main dam, i.e. *Quarry IV*, the *main dam excavation*, the *saddle dam excavation*, *Quarry II* and *Quarry III* and *Quarry I*, to construct a zoned earthfill embankment dam. As such, *Borrow Area A* will not have to be opened up in this case.

Sand for the blanket and chimney drains will be sourced from *NPC sand* and transported 153 km to site.
c) General

Table 7.9 provides a summary of the balancing of materials for option 8.

As indicated in this table there are **198% more** of the clayey sand transported surface material, **15% more** of the completely and highly weathered shale, and **12% more** of the highly and moderately weathered dolerite, available from onsite sources (i.e. from the borrow areas, quarries and dam excavations) than what is **required** for this option. Although not twice the volume of material required, it was deemed sufficient.

However, as mentioned above there is not sufficient dolerite material to construct a portion of the main dam with slightly weathered and unweathered dolerite material and therefore it is shown that *0% more* of this material is available from on-site sources than what is required, as a portion of this already need to be imported from a commercial quarry.

Should the estimated volume of this material of 3 443 000 m³ not be found on site during construction, further material should be sourced and transported from *Midmar Crushers* which will significantly increase the construction cost of this option.

Table 7.9:Balancing of materials for option 8

		А	В	С	D	E	F	G
Material use		Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely & highly weathered shales	Unweathered to moderately weathered shales	Highly & moderately weathered dolerite	Slightly weathered & unweathered dolerite	Sand
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Тс	otal required ⁽¹⁾	0	336 835	861 785	598 366	0	3 443 000	86 544
Av (2)	vailable on site	0	1 005 252	992 975	667 500	2 187 247	3 443 000	0
Im	ported ⁽³⁾	0	0	0	0	0	550 439	86 544
Тс	otal available	0	1 005 252	992 975	667 500	2 187 247	3 993 439	86 544
	Stockpiled ⁽⁴⁾	0	336 835	861 785	598 366	0	3 993 439	86 544
	Spoiled ⁽⁵⁾	0	668 417	131 190	69 134	2 187 247	0	0
ion	Dam forming	0	336 835	861 785	598 366	0	3 993 439	86 544
Act	Surplus ⁽⁷⁾	0	0	0	0	0	0	0
	Percentage remaining (%)	-	198	15	12	-	0	0
	TOTAL	0	1 005 252	992 975	667 500	2 187 247	3 993 439	86 544

The total volume of material required for the (1) main dam, (2) saddle dam, and all additional infrastructure including the (3) diversion works, (4) intake structure, (5) spillway i.e. approach, chute and plunge pool, and (6) outlet works.

(2) The total volume of material available on site from (1) the main dam excavation, (2) the saddle dam excavation, (3) Quarry I (left flank), (4) Quarry II (plunge pool), (5) Quarry III (spillway approach), (6) Quarry IV (tunnel inlet), (7) Borrow area A, (8) Borrow Area B and (9) Borrow Area C.

- (3) The total volume of material that have to be **imported from a commercial source**.
- (4) The total volume of material that need to be **stockpiled** for later use.
- (5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be **used in the forming of the specific dam type**.

(7) The total volume of surplus materials that is kept undisturbed in the respective quarries or borrow areas.

7.5.9 Other options

Further to the options described in **Sections 7.5.1** to **7.5.8** the following additional options were investigated:

• **Option 9:** Main dam - Zoned earthfill embankment dam; Saddle dam - Zoned earthfill embankment dam.

- 7-28
- **Option 10:** Main dam Composite dam (RCC with zoned ECRD on the one flank and zoned earthfill embankment dam on the other); Saddle dam Zoned earthfill embankment dam.

However, for both of the above options there is insufficient material found on site. They would require a large quantity of material to be imported from a commercial source, which would not be financially viable. Therefore, these options were eliminated from the final cost comparison.

7.5.10 Summary of cost comparison

The estimated dam costs (excl. VAT) for each dam type explained in the preceding sections are summarised in **Table 7.10**.

Based on the *cost comparisons of different dam types* for Smithfield Dam the following is revealed:

- Although ranging within R300 million from each other the following dam types have comparable construction costs (in increasing order):
 - **Option 4:** Main dam Zoned earth core rockfill dam; Saddle dam Zoned earthfill embankment dam;
 - **Option 5:** Main dam Zoned earth core rockfill dam; Saddle dam Zoned earth core rockfill dam;
 - **Option 7:** Main dam Zoned concrete faced rockfill dam (option 1); Saddle dam Zoned earthfill embankment dam;
 - **Option 2:** Main dam Earth core rockfill dam; Saddle dam Zoned earthfill embankment dam.
 - **Option 8:** Main dam Zoned concrete faced rockfill dam (option 2); Saddle dam Zoned earthfill embankment dam;
- The cost for the *roller compacted concrete gravity dam* is extremely high due to the required depths of excavation and the rate of RCC.
- The most suitable dam to construct in terms of cost is a *zoned earth core rockfill dam* for the main dam with a *zoned earthfill embankment dam* for the saddle dam (option 4).

 Table 7.10: Cost estimates for various dam types for Smithfield Dam

Option	Dam	Cost (R million	
No.	Main Dam	excl. VAT)	
1	Roller compacted concrete (RCC) gravity	Zoned earthfill embankment dam	R 4 382
2	Earth core rockfill dam (zoning option 1)	Zoned earthfill embankment dam	R 2 339
3	Concrete faced rockfill dam (zoning option 1)	Zoned earthfill embankment dam	R 2 695
4	Zoned earth core rockfill dam (zoning option 2)	Zoned earthfill embankment dam	R 2 029
5	Zoned earth core rockfill dam (zoning option 2)	Zoned earth core rockfill dam (zoning option 2)	R 2 227
6	Composite dam (RCC gravity and zoned ECRD (zoning option 2))	Zoned earthfill embankment dam	R 2 941
7	Zoned concrete faced rockfill dam (option 1) (zoning option 2)	Zoned earthfill embankment dam	R 2 231
8	Zoned concrete faced rockfill dam (option 2) (zoning option 3)	Zoned earthfill embankment dam	R 2 412
9	Zoned earthfill embankment dam	Zoned earthfill embankment dam	-
10	Composite dam (RCC with zoned ECRD on the one flank and zoned earthfill embankment dam on the other)	Zoned earthfill embankment dam	-

*These options were identified initially but not considered further, for reasons described in **Section 7.5.9**.

7.6 COMPARISON OF PRIMARY MAIN DAM TYPE OPTIONS (OPTIONS 1, 4, 6 AND 7)

Based on previous experience with dam type selection where RCC dams had been favoured, a detailed comparison of the BoQs of the primary dam types was conducted to determine the optimal dam type. The primary dam types compared were RCC gravity (Option 1), ECRD (Option 4), composite (Option 6) and CFRD (Option 7). The comparison BoQ is shown in **Appendix H**. It shows all the dam construction activities, and includes the quantities for the main dam and saddle dam in combination.

The costs of the diversion works, spillway and chute, and intake and outlet works have been included as line items. The detailed cost estimates for these items are shown in **Appendix G** in **Table G.17**, **Table G.18** and **Table G.19**. It was assumed that for all embankment dam type options the spillway and chute are the same, and the diversion works costs are the same. Similarly, for RCC gravity and composite dams, these costs have been assumed to be the same. For all dam types, the intake and outlet works costs are equal.

This comparison, paralleling the cost of all activities individually, allows the major costs for each dam type to be noted and compared. It shows that for Options 1 and 6, the largest cost is for the RCC material, due to its relatively high rate and quantity. For the earthfill and rockfill dams, the primary cost is either the earthfill or rockfill material, as expected. This demonstrates that an RCC gravity dam or a composite dam are not favourable due to higher costs, and were therefore not selected.

7.7 COMPARISON IN TERMS OF AVAILABILITY OF MATERIAL AND MATERIAL HANDLING

a) On site

As the doleritic materials are in most cases overlain by shale within the various quarries and within excavations available on site, significant amounts of materials need to be moved and either (1) Spoiled or (2) Stockpiled depending on the need for it for the various dam type options.

As such the study team included various options in order to try and optimise the available material on site and minimise the (1) handling of material and (2) the volumes of material that will need to be spoiled.

b) From commercial sources

In addition, due to the significant impact that importation of material from commercial quarries has on the roads in the vicinity of the dam site, the study team also included various options in order to try and optimise the available material on site and minimise the need for sourcing and transporting (1) dolerites and (2) sand from commercial quarries.

c) General

The estimated volumes of material that (1) will need to be spoiled and (2) will need to be imported from commercial sources are summarised in **Table 7.11**. Based on this table the following is revealed:

- There is not enough material available to construct an earth core rockfill dam with a complete outer shell consisting of dolerite and therefore a *zoned earth core rockfill dam* is better suited.
- There is not enough material available to construct a concrete faced rockfill dam using only slightly weathered or unweathered dolerite and therefore the downstream toe of the dam will need to be constructed with either the highly and moderately weathered dolerite or unweathered and moderately weathered shale.
- For all the various dam types *quarry I* will need to be opened to obtained the required volume of material.
- Although ranging within ± 2 million m³ from each other the following dam type options have comparable volumes of material that need to be spoiled (in increasing order of volumes):
 - **Option 1:** Main dam Roller compacted concrete (RCC) gravity; Saddle dam Zoned earthfill embankment dam;
 - **Option 6**: Main dam Composite dam (RCC and zoned ECRD); Saddle dam Zoned earthfill embankment dam;
 - **Option 7**: Main dam Zoned concrete faced rockfill dam (option 1); Saddle dam Zoned earthfill embankment dam;
 - **Option 4**: Main dam Zoned earth core rockfill dam; Saddle dam Zoned earthfill embankment dam;
- Should the estimated volumes of dolerite material from on-site sources prove to be correct there will be no need for transporting this material from commercial sources for the following dam type option:
 - **Option 1:** Main dam Roller compacted concrete (RCC) gravity; Saddle dam Zoned earthfill embankment dam;
 - **Option 4:** Main dam Zoned earth core rockfill dam; Saddle dam Zoned earthfill embankment dam;
 - **Option 7:** Main dam Zoned concrete faced rockfill dam (option 1); Saddle dam Zoned earthfill embankment dam;
- The following dam type options will have the least amount of sand required:
 - **Option 1:** Main dam Roller compacted concrete (RCC) gravity; Saddle dam Zoned earthfill embankment dam;
 - **Option 3:** Main dam Concrete faced rockfill dam; Saddle dam Zoned earthfill embankment dam

- **Option 7:** Main dam Zoned concrete faced rockfill dam (option 1); Saddle dam Zoned earthfill embankment dam;
- **Option 8:** Main dam Zoned concrete faced rockfill dam (option 2); Saddle dam - Zoned earthfill embankment dam;
- The most suitable dam to construct in terms of material handling (taking into consideration all aspects as mentioned above) is one of the following:
 - A roller compacted concrete (RCC) gravity dam for the main dam with a zoned earthfill embankment dam for the saddle dam (option 1);
 - A zoned earth core rockfill dam for the main dam with a zoned earthfill embankment dam for the saddle dam (option 4).
 - A *zoned concrete faced rockfill dam (option 1)* for the main dam with a *zoned earthfill embankment dam* for the saddle dam (option 7).

Option	Dam	type	Total volume of material to	Total volume of material to be commercially sourced			
NO.	Main Dam	Saddle Dam	be Spoiled (m ³)	Dolerite (m³)	Sand (m³)		
1	Roller compacted concrete (RCC) gravity	Zoned earthfill embankment dam	671 296	0	86 544		
2	Earth core rockfill dam (zoning option 1)	Zoned earthfill embankment dam	3 033 796	469 823	178 279		
3	Concrete faced rockfill dam (zoning option 1)	Zoned earthfill embankment dam	3 498 782	584 180	86 544		
4	Zoned earth core rockfill dam (zoning option 2)	Zoned earthfill embankment dam	2 474 259	0	180 345		
5	Zoned earth core rockfill dam (zoning option 2)	Zoned earth core rockfill dam (zoning option 2)	3 243 450	444 288	197 319		
6	Composite dam (RCC gravity and zoned ECRD (zoning option 2))	Zoned earthfill embankment dam	709 321	19 932	136 992		
7	Zoned concrete faced rockfill dam (option 1) (zoning option 2)	Zoned earthfill embankment dam	2 217 278	0	86 544		
8	Zoned concrete faced rockfill dam (option 2) (zoning option 3)	Zoned earthfill embankment dam	2 961 477	550 439	86 544		
9	Zoned earthfill embankment dam	Zoned earthfill embankment dam	-	-	-		

Table 7.11: Material handling for various dam types for Smithfield Dam

Option	Dam	type	Total volume of material to	Total volume of material to be commercially sourced				
No.	Main Dam	Saddle Dam	be Spoiled (m³)	Dolerite (m ³)	Sand (m³)			
10	Composite dam (RCC with zoned ECRD on the one flank and zoned earthfill embankment dam on the other)	Zoned earthfill embankment dam	-	-	-			

*These options were identified initially but not considered further, for reasons described in **Section 7.5.9**.

7.8 COMPARISON IN TERMS OF CONSTRUCTION PERIOD

Different dam types can be constructed at different construction rates. As such, due to the current significant water requirement deficits experienced in the proposed supply area of the uMkhomazi Water Project the rate at which the uMkhomazi Water Project can be implemented plays a significant role in the final decision on the optimal dam type. Therefore, the study team had a look at the estimated construction times of a (1) roller compacted concrete (RCC) gravity dam, (2) earth core rockfill dam (ECRD), and (3) concrete faced rockfill dam (CFRD) respectively.

Production rates assumed for the main dam components are summarised in **Table 7.12** with a basic construction programme for each shown in **Figure 7.1**.

The following have been assumed for each:

Roller compacted concrete (RCC) gravity dam

- The diversion works of an RCC dam will comprise of two stages;
- The first stage will involve the construction of a cofferdam and culverts that will immediately be followed by the construction of the intake structure, outlet works and embankment on the right flank of the dam wall up to a certain level;
- After the river flow has been diverted through the culverts, stage two of the diversion works will involve the construction of a second cofferdam to continue construction of the embankment on the left flank of the dam wall up to a certain level, and ultimately plugging the culverts once water can start flowing through the intake structure and outlet works; and
- At this stage water will start accumulating behind the dam wall and construction of the embankment will continue up to the FSL.
- Earth core rockfill dam (ECRD)
- The diversion works of an ECRD will comprise of three stages:

- The first stage will involve the *construction of the portals and diversion tunnels* that will immediately be followed by the construction of the intake structure and outlet works on the right flank of the dam wall as well as
- structure and outlet works on the right flank of the dam wall as well as construction of the embankment (both core and shell) up to a certain level on both flanks;
- After the river flow has been diverted through the diversion tunnels, stage two
 of the diversion works will involve the *construction of an upstream and downstream cofferdam* to continue construction of the embankment across
 the river section up to a certain level;
- Construction of the spillway on the left flank of the dam wall will commence immediately after the start of construction.; and
- Once construction has been completed up to the FSL *the diversion tunnels will be plugged* and water will start accumulating behind the dam wall.

Concrete faced rockfill dam (CFRD)

- The diversion works of a CFRD will comprise of three stages:
- The first stage will involve the construction of the portals and diversion tunnels that will immediately be followed by the construction of the intake structure and outlet works on the right flank of the dam wall as well as construction of the embankment up to a certain level on both flanks;
- After the river flow has been diverted through the diversion tunnels, stage two
 of the diversion works will involve the construction of an upstream and
 downstream cofferdam to continue construction of the embankment across the
 river section up to a certain level;
- Construction of the spillway on the left flank of the dam wall will commence immediately after the start of construction; and
- Once construction has been completed up to the FSL *the diversion tunnels will be plugged* and water will start accumulating behind the dam wall.

Should construction commence on the 1st of January 2019 which is deemed the earliest date for implementation of the uMWP, the earliest water delivery for the different dam types will be as follows:

- Roller compacted concrete (RCC) gravity dam: June 2023 (i.e. 56 months)
- Earth core rockfill dam (ECRD): August 2022 (i.e. 45 months)
- Concrete faced rockfill dam (CFRD): August 2022 (i.e. 45 months)

Hence, the following can be concluded:

• The *placement of the roller compacted concrete*, with an anticipated duration of *49 months*, is on the critical path of the RCC dam. This was based on average rates of placement in the world (Shaw, 2013) and assumed an average rate of placement of 30 000 m3/month. It is doubtful whether a higher rate of placement can be achieved on the proposed Smithfield Dam;

- On the other hand, the intake structure, with an anticipated duration of 43 months is on the critical path of both the ECRD and CFRD. If this can be completed earlier, the construction period for these dams could be significantly decreased; and
- The ECRD and CFRD can be constructed at a faster pace than the RCC dam, hence, from a construction period point of view, the rockfill dams are favoured.

No	Dam component		F	Production Rate)	Time			
NO	Dam component	Unit	Main dam volume	Rate/day	Rate/month ⁽¹⁾	Days	Months ⁽¹⁾	Years	
<u>2</u>	Diversion works								
	Roller compacted concrete (RCC) gravity dam								
2.1	Stage 1: Cofferdam 1 and culverts	m³	31 190.00	500.00 (5)	-	62.38	2.84	0.24	
2.2	Stage 2: Cofferdam 2 and plug of culverts	m³	31 190.00	500.00 ⁽⁵⁾	-	62.38	2.84	0.24	
	Earthcore rockfill dam (ECRD) and concrete faced rockfill dam (CFRD)								
2.1	Stage 1: Portals and diversion tunnels	m	250.00 ⁽²⁾	-	125.00 ⁽³⁾	44.00	2.00	0.17	
2.2	Stage 2: Cofferdams 1 and 2 (u/s and d/s of embankment)	m³	62 380.00	500.00 ⁽⁵⁾	-	124.76	5.67	0.47	
2.3	Stage 3: Medium pressure pipelines and plug of tunnel	-	-	-	-	-	1.00 (7)	-	
<u>3</u>	Main and saddle dam excavation								
	Roller compacted concrete (RCC) gravity dam	m³	1 068 500.00	5 000.00	-	213.70	9.71	0.81	
	Earth core rockfill dam (ECRD)	m³	1 197 848.00	5 000.00	-	239.57	10.89	0.91	
	Concrete faced rockfill dam (CFRD)	m³	1 158 049.00	5 000.00	-	231.61	10.53	0.88	
<u>4</u>	Intake structure								
4.1	Excavation and foundation preparation	m³	7 808.00	50.00	-	156.16	7.10	0.59	
4.2	Reinforcement, formwork, concrete and unformed surfaces	m³	12 883.00	15.00	-	858.87	39.04	3.25	
<u>5</u>	Outlet works								
5.1	Excavation and foundation preparation	m³		50.00	-	-	-	-	
5.2	Reinforcement, formwork, concrete and unformed surfaces	m³		15.00	-	-	-	-	
<u>6</u>	Main and saddle dam forming								
	Roller compacted concrete (RCC) gravity dam								
	RCC concrete	m³	1 498 979.00	-	30 000.00 ⁽⁴⁾	1 099.25	49.97	4.16	
	Earth core rockfill dam (ECRD)								
6.1	Core	m³	922 791.00	2 100.00 ⁽⁶⁾	-	439.42	19.97	1.66	
6.2	Shell - Rockfill	m³	3 810 316.00	10 000.00 ⁽⁶⁾	-	381.03	17.32	1.44	
	Concrete faced rockfill dam (CFRD)								
	Rockfill (Impervious layer)	m³	4 078 337.00	10 000.00 ⁽⁶⁾	-	407.83	18.54	1.54	
7	Spillway, i.e. approach, chute and plunge pool								
7.1	Spillway excavation (trough, chute and flip bucket)	m³	1 687 686.00	5 000.00	-	337.54	15.34	1.28	
7.2	Formwork, reinforcing and structural concrete placement	m ³	37 254.00	150.00	-	248.36	11.29	0.94	

Table 7.12:	Production rates for	comparison	of the construction	programme of th	he three main dam types
-------------	----------------------	------------	---------------------	-----------------	-------------------------

(1) Based on a 22 day working-month.

(2) Five diversion tunnels with a length of 250m each are proposed.

(3) **Source:** Vaal Augmentation Planning Study (Consult 4, 1994).

(4) **Source:** Roller Compacted Concrete Dams - The State of the Art 2013, Dr Quentin Shaw, ARQ (Pty) Ltd, Pretoria, South Africa (Shaw, 2013).

(5) Source: Ncwabeni Off-channel Storage Dam Feasibility Study: Module 1: Technical Study (BKS (Pty) Ltd, 2012).

(6) Source: Lesotho Highlands Water Project; Consulting Services for Mohale Dam; Stage 1 Services; Tender Design and Preparation of Tender Documents (Mohale Consultants Group, 1998).

(7) Assumed.

(8) Volumes captured in this table are for the **main dam only**, thus an assumption was made that the saddle dam of all options will be an earthfill dam.

ID	NurTa	ask Name	Duration	Start	Finish	Predecessors		20	19			20	20			20	21			202	22	
							Half	1st Half	2nd	Half	1st	Half	2nd	Half	1st	Half	2nd	Half	1st	Half	2nd H	lalf
							4	1 2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	O RO	OLLER COMPACIED CONCRETE (RCC) GRAVITY DAM	55.55 mons	Tue 19/01/01	Mon 23/06/05			01/01														
2	1	Start of construction	U mons	Tue 19/01/01	Tue 19/01/01		•															
3	2		5.68 mons	Mon 19/01/07	Thu 19/06/13	2		Ŧ														
4	2.1	Stage 1: Cofferdam 1 and culverts	2.84 mons	Mon 19/01/07	Tue 19/03/26	2																
5	2.2	Stage 2: Cofferdam 2 and plug of culverts	2.84 mons	Tue 19/03/26	Thu 19/06/13	4																
6	3	Main and saddle dam excavation	9./1 mons	Tue 19/02/12	Mon 19/11/11	4FS-1.5 mons				<u> </u>												
7	4	Intake structure	43.14 mons	5 Tue 19/02/12	Fri 22/07/29																•	
8	4.1	Excavation & foundation preparation	7.1 mons	Tue 19/02/12	Thu 19/08/29	4FS-1.5 mons																
9	4.2	Reinforcement, formwork, concrete and unformed surface	s 39.04 mon	s Thu 19/06/06	Fri 22/07/29	8FS-3 mons		9		ļ		<u>+</u>			ļ							
10	5	Outlet works	43.14 mons	5 Tue 19/02/12	Fri 22/07/29																•	
11	5.1	Excavation & foundation preparation	7.1 mons	Tue 19/02/12	Thu 19/08/29	4FS-1.5 mons		9	<u> </u>													
12	5.2	Reinforcement, formwork, concrete and unformed surface	s39.04 mon	s Thu 19/06/06	Fri 22/07/29	11FS-3 mons		9				ļ			ļ			·····				
13	6	Main and saddle dam forming	49 mons	Tue 19/07/09	Mon 23/06/05	6FS-4.5 mons						++										
14	7	Earliest water delivery	0 mons	Mon 23/06/05	Mon 23/06/05	13,12,9,5																
15																						
16																						
17	0	EARTH CORE ROCKFILL DAM (ECRD)	45.14 mons	5 Tue 19/01/01	Wed 22/08/17																	
18	1	Start of construction	0 mons	Tue 19/01/01	Tue 19/01/01		•	01/01														
19	2	Diversion works	23.86 mons	6 Mon 19/01/07	Wed 20/11/25		9															
20	2.1	Stage 1: Portals and diversion tunnels	2 mons	Mon 19/01/07	Fri 19/03/01	18		ф,														
21	2.2	Stage 2: Cofferdams 1 and 2 (u/s and d/s of embankmen	t 5.67 mons	Mon 19/03/04	Thu 19/08/08	20		(_													
22	2.3	Stage 3: Medium pressure pipelines and plug of tunnel	1 mon	Wed 20/10/28	Wed 20/11/25	31,32																
23	3	Main and saddle dam excavation	10.89 mons	5 Mon 19/01/07	Wed 19/11/06	18			1													
24	4	Intake structure	43.14 mons	5 Mon 19/03/04	Wed 22/08/17			-													-	
25	4.1	Excavation & foundation preparation	7.1 mons	Mon 19/03/04	Tue 19/09/17	20)												
26	4.2	Reinforcement, formwork, concrete and unformed surfa	39.04 mon	s Wed 19/06/26	Wed 22/08/17	25FS-3 mons		•		:		:			;		:	:			- h	
27	5	Outlet works	43.14 mons	s Mon 19/03/04	Wed 22/08/17			-														
28	5.1	Excavation & foundation preparation	7.1 mons	Mon 19/03/04	Tue 19/09/17	20																
29	5.2	Reinforcement, formwork, concrete and unformed surfa	39.04 mon	s Wed 19/06/26	Wed 22/08/17	28FS-3 mons		•														
30	6	Main and saddle dam forming	19.97 mons	Wed 19/03/27	Wed 20/10/28									-0								
31	6.1	Core	19.97 mon	s Wed 19/03/27	Wed 20/10/28	23FS-8 mons,21F		•													-	
32	6.2	Shell - Rockfill	17.32 mon	s Wed 19/03/27	Fri 20/08/14	23FS-8 mons,21F	;	•				†									_	
33	7	Spillway i.e. approach, chute and plunge pool	19.13 mons	6 Mon 19/01/07	Wed 20/07/15		ç						▽									
34	7.1	Spillway excavation	15.34 mon	s Mon 19/01/07	Tue 20/03/31	18						h										
35	7.2	Formwork, reinforcing and structural concrete placemen	111.29 mon	s Tue 19/08/13	Wed 20/07/15	34FS-7.5 mons			•)								_	
36	8	Earliest water delivery	0 mons	Wed 22/08/17	Wed 22/08/17	22,35,29,31,26,3	i.														08	3/1
37																						
38																						
39	0	CONCRETE FACED ROCKFILL DAM (CFRD)	45.14 mons	5 Tue 19/01/01	Wed 22/08/17		, e	,	}						·						-	
40	1	Start of construction	0 mons	Tue 19/01/01	Tue 19/01/01		4	01/01														
41	2	Diversion works	25.07 mons	Mon 19/01/07	Fri 21/01/15		ţ	-							•							
42	2.1	Stage 1: Portals and diversion tunnels	2 mons	Mon 19/01/07	Fri 19/03/01	40																
43	2.2	Stage 2: Cofferdams 1 and 2 (u/s and d/s of embankm	¢5.67 mons	Mon 19/03/04	Thu 19/08/08	42			_													
44	2.3	Stage 3: Medium pressure pipelines and plug of tunnel	1 mon	Tue 20/12/01	Fri 21/01/15	52									<u> </u>						_	
45	3	Main and saddle dam excavation	10.53 mons	Mon 19/01/07	Mon 19/10/28	40				_												
46	4	Intake structure	43.14 mons	s Mon 19/03/04	Wed 22/08/17																	
47	4.1	Excavation & foundation preparation	7.1 mons	Mon 19/03/04	Tue 19/09/17	42				1												
48	4.2	Reinforcement, formwork, concrete and unformed su	r 39.04 mon	s Wed 19/06/26	Wed 22/08/17	47FS-3 mons				1		+			ł	• • • • • • • • • • • • • • • • • • • •					_	
49	5	Outlet works	43.14 mons	Mon 19/03/04	Wed 22/08/17																	
50	5.1	Excavation & foundation preparation	7.1 mons	Mon 19/03/04	Tue 19/09/17	42																
51	5.2	Reinforcement. formwork. concrete and unformed su	r 39.04 mon	s Wed 19/06/26	Wed 22/08/17	50FS-3 mons				4		+			·							
52	6	Main and saddle dam forming	18.54 mon	Mon 19/06/10	Tue 20/12/01	42,45FS-5 mons.4				1		†i			1			1			T	
53	7	Spillway i.e. approach. chute and plunge pool	19.13 mon	Mon 19/01/07	Wed 20/07/15		, i						v									
54	7.1	Spillway excavation	15.34 mon	s Mon 19/01/07	Tue 20/03/31	40						h	-									
55	7.2	Formwork, reinforcing and structural concrete placers	11.29 mon	s Tue 19/08/13	Wed 20/07/15	54FS-7.5 more			4	1		P										
56	8	Earliest water delivery	0 more	Wed 22/02/17	Wed 22/09/17	48 51 55 44															08	3/1
50	<u>۳</u>	Laimost Mutor destory	o mons	VICU 22/00/1/	WCu ZZ/00/1/	-+++++++++++++++++++++++++++++++++++++	1															

Figure 7.1: Construction programmes for different dam types

Further to the comparison of the (1) cost as well as (2) availability of material and material handling, and (3) construction period comparisons of different dam types for Smithfield Dam as discussed in the preceding sections of this report, a number of other factors have also been considered in the selection of the best dam type. These include the following (also summarised in Table 7.13):

7.9.1 Visual impact

The *approach* to the side channel spillway for both the earthfill and rockfill embankment dams comprise the excavation of the top of the hill on the left flank of the Main Dam. The spillway is located from this approach towards an approximately 30m deep quarry for construction material on the downstream side of the Main Dam. The quarry will be used as a *stilling basin* / plunge pool arrangement.

The visual impact of the removed top of the hill as well as the quarry/plunge pool was considered.

It was concluded that the change in the top of the hill will not impact seriously on the surroundings. In fact, if worked off with pleasing lines the spillway approach/ ogee weir/ spillway chute arrangement will suit the environment and the removed top of the hill with the spillway arrangement will have a positive appearance.

It is also planned to excavate the plunge pool in a pleasing benched shape as being done for many high dams. This plunge pool is hidden away and is also not in the public eye.

In comparison with a concrete dam which will have a solid grey structure inserted into the visual environment an embankment dam will have a light blue rip-rap appearance on a sloped fill. No preference regarding the one to the other is mentioned regarding visual appearance.

7.9.2 Risk involved with the diversion on embankment dams

The risk associated with failure of the embankment coffer dams, due to overtopping, is normally taken at the 1:20 year return period level. For concrete gravity dams the risk of delays and damages to shuttering due to overtopping

events is significantly lower. For Smithfield Dam; six (6) large tunnels have to be provided on the right bank in-situ rock of the river and an upstream cofferdam for river diversion purposes.

In order to assess the two options on the same level regarding risk it has been decided for the embankment option to provide a low concrete gravity wall (as part of the embankment) supporting rockfill at the upstream toe of the proposed embankment to serve as a cofferwall. Only two tunnels or conduit outlets have to be considered for this option. During the first summer of construction the dam can be overtopped without any damages or delays. During winter the portion of the embankment downstream of the cofferdam can be constructed. During winter the dam will not be overtopped. By this way the two types of dams can have the same risk. This option will be considered in detail during the feasibility design phase.

The conclusion regarding dam type selections is that both options can be engineered to the same level of risk. Theses aspects do not provide a reason for the selection of the one option as a preferred option.

7.10 COMPARISON AND CONCLUSION

The above-mentioned activities are summarised in **Table 7.13** for the first six lowest cost options.

Reference	Acrest	Order of option preference								
report	Aspect	1	2	3	4	5	6			
7.5	Lowest construction cost (R Million excluding VAT)	Option 4 (2.029)	Option 5 (2.227)	Option 7 (2.230)	Option 2 (2.339)	Option 8 (2.412)	Option 3 (2.695)			
7.7	Shortest construction period	All Options*								
7.6	Aggregates to be imported from Midmar & Pietermaritzburg (Less EMP & public roads related problems)	Options 4 & 7 (0m ³)	Option 6 (20 000m ³)	Option 5 (444 000 m ³)	Option 2 (470 000 m ³)	Option 8 (550 439 m ³)	Option 3 (584 180m ³)			
7.6	Sand to be imported from Umkomaas (Less EMP & public roads related problems)	Options 3, 7 & 8 (87 000m ³)	Option 6 (137 000m ³)	Options 2 & 4 (180 000 m ³)	Option 5 (200 000 m ³)	-	-			
7.6	Less volume of material to be spoiled	Option 6 (710 000 m ³)	Option 4 (2.5 million m ³)	Options 2 & 8 (3.06million m ³)	Option 5 (3.25million m ³)	Option 3 (3.5million m ³)	-			
7.8.1	Visual impact	All equal								
7.8.2	Delay/damages risk involved with river diversion	All equal								

Table 7.13: Summary of the lowest cost dam type options

(1) Option 1 construction period is longer than all presented in this table.

From **Table 7.13** the following is clear:

- **Option 1**, the RCC gravity dam is too expensive, it was not included in the preference order of options;
- Many embankment dam options are cheaper than Option 1. The composite RCC gravity/embankment dam is R840 million more expensive than the lowest cost embankment type dam. This represents about 40% of the cost of the lowest cost embankment dam type;
- The embankment types of dams vary in cost within 13% from the lowest cost option. Any of these types can therefore be considered. However, *Option 4, 7 and 8* are within the same margin below 10%;
- Rockfill of embankment types can be constructed quicker than the RCC of gravity types. This may have an influence on the completion date. However, it is foreseen that the composite RCC gravity/ECRD type can be constructed in the same time as the embankment type dams; and
- Option 4, the lowest cost option is the best option selected with only a small negative aspect in the amount of sand to be imported from Umkomaas. There may be an impact for the import of materials from Umkomaas. More materials will be spoiled, but this can be a positive factor as these materials may be used for other purposes e.g. rehabilitation of borrow and camp areas, or to be used for gravelling roads.

7.11 RECOMMENDATION

It is recommended that the best dam type to be considered for Smithfield Dam's feasibility design is *Option 4* which is

- A zoned earth core rockfill dam for the main dam and
- A zoned earthfill embankment dam for the saddle dam.

8 BASIC INFORMATION – LANGA BALANCING DAM

8.1 INTRODUCTION

Basic information required for the *Dam Type Selection-task* was sourced from existing reports as summarised in **Table 8.1**. For ease of reference a summary of the acquired information is described in **Sections 8.2** to **8.5**.

Table 8.1:Summary of existing reports sourced for information on LangaBalancing Dam

Required information	Report
Topographical surveys and mapping	Described in this report
Hydrology (streamflow)	P WMA 11/U10/00/3312/2/1
	Hydrological assessment of the uMkhomazi River catchment report
Water requirements	P WMA 11/U10/00/3312/2/2
	Water requirements and return flows report
Dam yield characteristics	P WMA 11/U10/00/3312/2/3
	Water resources yield assessment report
Dam characteristics:	(1) & (2) P WMA 11/U10/00/3312/2/3/1/3
(1) Dam position	Supporting document 3:
(2) Final layout	Optimization of scheme configuration
Layout, costs and economics	(1) P WMA 11/U10/00/3312/2/3/1/3
	Supporting document 3:
	Optimization of scheme configuration
	(2) P WMA 11/U10/00/3312/2/3/1/4
	Supporting document 4:
	Cost model
Geotechnical and materials	(1) P WMA 11/U10/00/3312/3/2
Investigations	Geotechnical report
	(2) P WMA 11/U10/00/3312/3/2/1
	Supporting document 1:
	(3) P WMA 11/U10/00/3312/3/2/2
	Supporting document 2:
	Seismic refraction investigation at the proposed uMkhomazi Water Project Phase 1
	(4) P WMA 11/U10/00/3312/3/2/4
	Supporting document 4:
	Langa Balancing Dam: Materials and geotechnical investigation
	(5) P WMA 11/U10/00/3312/3/2/5
	Supporting document 5:
	Conveyance system: Materials and geotechnical investigation

8.2 TOPOGRAPHICAL SURVEYS AND MAPPING

Aerial topographical surveys were conducted as part of this study and used for the proposed dam and reservoir of the Langa Balancing Dam.

8.3 WATER REQUIREMENTS, DAM YIELD CHARACTERISTICS AND COSTS

For a full description of the reasoning behind the selection of the final size for Langa Balancing Dam based on (1) water requirements, (2) yield calculations, and (3) costs i.e. URV calculations, see the following reports:

- P WMA 11/U10/00/3312/2/2: Water requirements and return flows (AECOM, AGES, MMA, & Urban-Econ, 2014)
- *P WMA 11/U10/00/3312/2/3: Water resources yield assessment report* (AECOM, AGES, MMA, & Urban-Econ, 2014); and
- P WMA 11/U10/00/3312/3/1/3: Optimization of scheme configuration (AECOM, AGES, MMA, & Urban-Econ, 2014)

From report *P WMA 11/U10/00/3312/3/1/3: Optimization of scheme configuration* (AECOM, AGES, MMA, & Urban-Econ, 2014) it was concluded that the selected scheme will comprise of a *Langa Balancing Dam with a storage volume of 12.5 million m³ with a resultant FSL of 919 masl* (final preferred layout included as Figure A.9 in Appendix A). As such, the *geotechnical investigations* as well as the *dam type selection* was based on this dam position, size and layout. However, the feasibility design report describes the selected dam as having a live storage volume of $14.82 \times 10^6 \text{ m}^3$ with a resultant FSL of 923 masl, which correlates with a 24-day supply at 7.10 m³/s.

8.4 FLOOD HYDROLOGY

Flood absorption analyses were undertaken for the sizing of spillways and freeboard for the different dam types. The required freeboard above the full supply levels (FSL) of the various dam types was determined in accordance with the publication, *Interim Guidelines on Freeboard for Dams* (South African National Committee on Large Dams, 1990).

Flood frequency analyses were carried out for the Langa Balancing Dam site as part of this study. These analyses are summarised in **Table 8.2**.

Flood descriptions	Flood acronyms	Flood peaks (m³/s)
100 year flood peak discharge	Q ₁₀₀	145
200 year flood peak discharge	Q ₂₀₀	167
Regional Maximum Flood	RMF	252
Recommended Design Flood	RDF	167
Safety Evaluation Flood	SEF	285

Table 8.2:Flood peaks for the Langa Balancing Dam site

Spillway lengths were selected and the maximum water level in the dams for the safety evaluation flood (m^3/s) was obtained by routing various storm duration hydrographs through the reservoir. Table 8.3 summarises the results for these analyses.

Table 8.3:Total required freeboard for different dam types – Langa BalancingDam site

Dam Type	Spillway Type	C-Value	Spillway Length (m)	Total Required Freeboard (m)	Non- overspill Crest Level (masl)
RCC gravity dam	Ogee	2.14	20	3.6	926.6
Embankment dams (earthfill & rockfill)	Ogee	2.14	20	3.6	926.6

C relates to $Q = CLH^{3/2}$

Where:

 $Q = discharge (m^3/s)$

C = *variable discharge coefficient*

L = effective length of the crest (m)

H = actual head being considered on the crest, including velocity of approach head (m)

8.5 DAM CHARACTERISTICS

Mutual parameters (dam characteristics) used for the cost comparison of various dam types for the selected Langa Balancing Dam as discussed above, are indicated in **Table 8.4**.

Table 8.4:Dam characteristics for the selected Langa Balancing Dam

Type of dam	Dependent on geotechnical investigations
DWA classification	Category III
Full supply level – FSL (masl)	919
Minimum operating level – MOL (masl)	890
Storage volume at FSL (million m³)	12.5
Surface area at FSL (km ²)	0.95
Catchment area (km ²)	5.4
Crest level (masl)	923 masl for gravity type dams 923 masl for embankment type dams
Maximum wall height (m)	46 masl for gravity type dams 46 masl for embankment type dams
Maximum water depth (m)	46 masl for gravity type dams 46 masl for embankment type dams
Crest length of wall (m)	970
1:100 year yield (million m ³ /a)	N/A
(2012 in-catchment development levels)	(Provide 8.65 m ³ /s for 21 days)
1:200 year yield (million m ³ /a)	N/A
(2050 in-catchment development levels)	(Provide 8.65 m ³ /s for 21 days)

8.6 **GEOTECHNICAL INVESTIGATIONS**

8.6.1 Materials investigations

a) Sources for the various types of material

Required materials for Langa Balancing Dam can be sourced on site from the following sources:

- Spoil from the conveyance tunnel excavation;
- Excavated material from the tunnel outlet portal;
- Excavated material from the spillway approach area on the upper left flank;
- Material from a borrow area/quarry located below FSL in the dam basin.

The location of these can be seen on Figure A.6 in Appendix A.

Alternatively, if no sufficient material of a specific type is available on site, it can be imported from nearby commercial sources. For this purpose three commercial sources have been identified close to the Langa Balancing Dam site (see **Table 8.5**). In cases where no sufficient material existed on site, transport costs to import the needed material from commercial sources were taken into account.

Table 8.5: Commercial sources close to the Langa Balancing Dam site

Name	Material source	Distance from Langa Balancing Dam site (km)
Midmar Crushers	Aggregates	66.8
Natal Crushers	Aggregates	44.2
NPC	Natural sand	87.2

Table 8.6 and **Table 8.7** summarises the volumes of material available from the various sources (as defined and listed above) for an RCC and earthfill / rockfill respectively. Based on these a balancing exercise was conducted and construction costs estimated to determine the optimal dam type.

Table 8.6:Available material for Langa Balancing Dam – construction of an
RCC dam

			Α	В	С	D	E	F
Material (source)		Material (source)	Overburden for soil: Organic topsoil	Clayey sand transported surface material	Completely and highly weathered shales	Unweathered to moderately weathered shales	Highly and moderately weathered dolerite	Slightly weathered and unweathered dolerite
			Volume (m³)	Volume Volume Volume (m³) (m³) (m³)		Volume (m³)	Volume (m³)	Volume (m³)
		(1) Tunnel excavation	0	0	0	0	0	250 000
		(2) Tunnel 8 000 outlet portal		0	230 000	70 000	50 000	40 000
ed Dam	terial	(3) Spillway approach 15 000		0	35 000	280 000	20 000	0
ompact	able ma	(4) Dam excavation ⁽¹⁾ 71 200		0	0	150 200	150 200	175 300
Roller C	Avail	(5) Quarry/ Borrow area 20 000		0	120 000	180 000	350 000	1 200 000
		(6) Other	0	0	0	0	0	0
		TOTAL	114 200	0	385 000	680 200	570 200	1665 300

(1) Dam excavation volumes obtained from the cost model calculations

CFRD

Table 8.7: Available material for Langa Balancing Dam - construction of a

			Α	В	С	D	E	F
Material (source)		Material (source)	Overburden for soil: Organic topsoilClayey sand transported surface materialVolume 		Completely and highly weathered shales		Highly and moderately weathered dolerite	Slightly weathered and unweathered dolerite
					Volume (m³)	Volume (m³)	Volume (m³)	Volume (m ³)
		(1) Tunnel excavation	0	0	0	0	0	250 000
E		(2) Tunnel outlet portal	8 000	0	230 000	70 000	50 000	40 000
ckfill da	terial	(3) Spillway approach 15 000		0	35 000	280 000	20 000	0
aced ro	able ma	(4) Dam excavation ⁽¹⁾	138 300	0	0	182 500	182 500	213 000
increte f	Avail	(5) Quarry/ Borrow area	20 000	0	120 000	180 000	350 000	1 200 000
Col		(6) Other	0	0	0	0	0	0
		TOTAL	181 300	0	385 000	712 500	602 500	1 703 000

(1) Dam excavation volumes obtained from the cost model calculations

b) Excavation volumes from Quarry/Borrow area

A large volume of soft rockfill (weathered shale) will have to be removed from the quarry in order to reach the hard shale and dolerite rockfill, however, the soft material can be used in certain zones of any of the alternative embankment dam types. The guarry will provide sufficient hard rockfill for the construction of a CFR or ECR Dam.

The guarry contains approximately 1 200 000 m³ of hard rockfill (unweathered shale and dolerite) and 350 000 m³ of soft rockfill (moderately weathered shale), which is sufficient for a concrete faced rockfill dam.

c) Main conclusions

The main conclusions of the materials investigations for sources of dam construction materials can be summarised as follows:

- No impervious earthfill materials were identified therefore an earthfill dam or earthcore rockfill dam are not suitable;
- No unweathered dolerite was identified;

- Shales of various weathered nature have been identified; and
- Hard rockfill (unweathered shale and dolerite) found in the quarry is sufficient for a concrete faced rockfill dam or for the aggregate of a RCC dam.

8.6.2 Geotechnical (foundation) investigations

a) Foundations of the dam and spillway structures

Excavation depths at borehole positions were recommended based on the results of the geotechnical investigation, i.e. seismic refraction surveys as well as rotary core drilling and Lugeon water pressure testing conducted along the centre line of Langa Balancing Dam and the spillway structure.

Table 8.8 and **Table 8.9** summarise the excavation depths for the various components of the different types of dams, as well as the spillway structure, based on the information as described above. Long-sections of these are provided in **Appendix K**, with the location of the various boreholes shown in **Appendix A**.

Borehole No.	Elevation (masl)	vation RCC		Earthfill dam		ECR dam		CFR dam	
		dam	Core	Shell	Core	Shell	Plinth	Shell	
NM9	916.31	10.0	3.1	2.3	3.1	2.3	5.0	2.3	
NM1	894.68	12.0	5.0	1.6	5.0	1.6	5.0	1.6	
NM2	888.36	8.5	3.5	3.5	3.5	3.5	6.2	3.5	
NM3	882.03	6.0	5.5	3.0	5.5	3.0	5.0	3.0	
NM4	886.90	5.0	2.6	2.6	2.6	2.6	3.0	2.6	
NM5	891.31	11.0	5.3	5.3	5.3	5.3	6.0	5.3	
NM6	908.24	20.0	5.0	17.3	5.0	17.3	17.5	17.3	
NM7	912.61	23.0	6.0	3.0	6.0	3.0	8.0	3.0	
NM8	919.00	N/A	5.0	7.6	5.0	7.6	7.6	7.6	
NM10	N/A	7.0	5.5	2.0	5.5	2.0	5.5	2.0	

Table 8.8:Excavation depths (m) for Langa Balancing Dam based on
geotechnical investigations

Table 8.9:Excavation depths (m) for Langa Balancing Dam's spillwaystructure (concrete chute) based on geotechnical investigations

Borehole No.	Elevation (masl)	Concrete chute
NM9	916.31	5.0
NM1	894.68	5.0
NM2	888.36	6.2
NM3	882.03	5.0
NM4	886.90	3.0
NM5	891.31	6.0
NM6	908.24	17.5
NM7	912.61	8.0
NM8	919.00	7.6
NM10	N/A	5.5

b) Main conclusions

The main conclusions of the *geotechnical investigations for the foundations of Langa Balancing Dam and the spillway structure* can be summarised as follows:

- Foundation conditions on the left side of the river is better than on the right side;
- The spillway is to be located on the left side;
- The foundation conditions in the central river section is good for a roller compacted concrete (RCC) gravity dam.

8.7 OTHER PARAMETERS

8.7.1 Filters and transition layers

The width of filters and transition layers that were considered in the assessments are listed in **Table 8.10**.

Table 8.10:NOC widths, curtain grout spacing and width of filters and
transition layers for various dam types considered in cost
comparison

Para	meter	Roller compacted concrete gravity dam (RCC)	Concrete faced rockfill dam (CFRD)	Composite Dam CFRD + RCC spillway section
NOC crest width (m)		8	8	8
Curtain grouting spacing (m)		2	2	2
	Rip rap	-	-	-
Filters and	Gravel protection / transition	-	2 x 2	2 x 2
transition layers (Thicknesses)	Sand filter	-	-	-
(m)	Chimney drain	-	-	-
	Blanket drain	-	-	-

8.7.2 Slopes

Slope stability analyses were conducted with the tested parameters for the different soil types from the geotechnical investigations to determine the optimal slopes of each of the various dam types. Parameters used in this exercise are summarised in Table 8.11. The results from the soil stability analyses are included in Appendix I, with the resultant slopes for the various dam types summarised in Table 8.12.

Table 8.11: Parameters for the various soil types

No.	Material Phi – Φ type (°)		Cohesion – C (kPa)	Density (kg/m³)	
F	Hard rockfill: Unweathered shale and dolerite	35	0	2100	
-	Undisturbed dolerite	40	100	2 720	
-	Concrete	35	500	2 300	

Table 8.12: Resultant slopes for various dam types considered in cost comparison

Dam type	Upstream slope	Downstream slope
Roller compacted concrete gravity dam (RCC)	1 (V): 0.1 (H)	1 (V): 0.8 (H)
Concrete faced rockfill dam (CFRD)	1 (V): 2 (H)	1 (V): 2.2 (H)

9 LANGA BALANCING DAM – ASSESSMENT <u>BEFORE</u> AND DURING GEOTECHNICAL INVESTIGATIONS

9.1 INTRODUCTION AND OBJECTIVE

The objective of this exercise was to consider various possible dam layouts and types for Langa Balancing Dam to guide the geotechnical investigations. The following aspects were considered:

- Layouts of the dam, approach and chutes; and
- Construction costs of excavations.

9.2 DAM TYPES

Embankment and concrete gravity dam types were considered with the same position of the centre lines.

9.3 DAM LAYOUTS

Initial site investigation indicated that a spillway on the right flank will not be feasible due to possible deep foundation weathering. A spillway on the left flank was proposed.

The position of the centre of the dam wall was important as a marshy area exists in the stream. The marshy area increased the cost for the construction of the dam wall, as the excavation in this area would be deep and expensive.

These aspects dictated that only one position for the dam wall and the spillway was identified for the geotechnical investigation. This position and layout is shown in **Figure A.3** in **Appendix A**.

9.4 ASPECTS OF THE CONSTRUCTION COSTS

9.4.1 Costs for the excavation

Section 4.3 indicates all costs for forming the embankments. The excavation material from the spillway approach and chute was assumed to be used to form the embankments.

However, the following requirements for the geotechnical investigation were identified:

- To determine if the material in the spillway approach and chute will be acceptable in terms of quality and quantity and
- To determine the availability of suitable (quality and quantity) material inside the dam basin area for the forming of an embankment.

9.5 RECOMMENDATION

The following recommendations were thus made:

- The geotechnical investigation must determine the depth of founding material for the embankment;
- The geotechnical investigations must determine the quality and quantity of material at the position of the approach channel and chute.
- The geotechnical investigation must identify material suitable for the construction of the dam wall inside the dam basin.

9.6 DURING GEOTECHNICAL INVESTIGATIONS

9.6.1 Drilling programme

The programme provided for investigations on the centre line, on the left flank and inside the basin at possible identified borrow/quarry areas. If the materials at Option 2 were not adequate Option 1 will then be investigated.

10 LANGA BALANCING DAM – ASSESSMENT AFTER GEOTECHNICAL INVESTIGATIONS

10.1 INTRODUCTION AND OBJECTIVE

With information available on the *construction materials available on site* as well as the *foundation conditions along the centre line of Langa Balancing Dam,* the objective of this exercise was to compare costs for various dam types to (1) select the optimal dam type, and ultimately to (2) select the best scheme. In order to do this a balancing exercise was conducted to ensure optimal use of available materials on site that will also influence the cost estimate. This balancing exercise took into account the following:

- The total volume of material of each specific type *required* for the (1) dam, and all additional infrastructure including the (2) diversion works, (3) intake structure, (4) spillway i.e. approach, chute and plunge pool, and (5) outlet works;
- The total volume of material of each specific type *available* on site from (1) the tunnel excavation, (2) the tunnel outlet portal, (3) the spillway approach, (4) the dam excavation, and (5) the quarry/borrow area;
- The total volume of material of each specific type that have to be *imported* from a commercial source;
- The total volume of material of each specific type that need to be stockpiled for later use;
- The total volume of material of each specific type that need to be *spoiled* in the designated waste disposal site;
- The total volume of material of each specific type that need to be used in the forming of the specific dam type; and
- The total volume of material of each specific type that is kept *undisturbed* in the respective quarries or borrow areas.

During the construction materials investigation a "safety factor" is built in whereby twice the volume of material required for construction should be proved during the site investigation. However, a decision was made that, for the purpose of the balancing exercise, the *required material* was balanced against the *available material* on a one-to-one basis. An indication of the volume of material of each specific type that remains within the respective quarries or borrow areas (i.e. that is kept is kept undisturbed/untouched) is given in Table 10.2 to Table 10.4.

10.2 DAM TYPES

Based on the information received from the geotechnical and materials investigations, dam types that were considered for Langa Balancing Dam are summarised in Table 10.1. Typical cross-sections for each of the dam types listed above are included in Appendix J.

Table 10.1:	Dam type options	investigated for	Langa Bal	ancing Dam

Option No.	Section	Dam type				
1	10.5.1	Concrete faced rockfill dam (CFRD)				
2	10.5.2	Roller compacted concrete (RCC) gravity dam				
3	10.5.3	Composite dam (Central RCC section with CFRD left and right flank)				

10.3 DAM SIZE AND LAYOUT

The dam size and layout was based on a *Langa Balancing Dam with a storage volume of 12.5 million m³ with a resultant FSL of 919 masl* as summarised in Section 8.

10.4 PRIORITY SEQUENCES

As mentioned in **Section 8** materials for the construction of Langa Balancing Dam can be sourced on site from (1) the tunnel excavation, (2) the tunnel outlet portal, (3) the spillway approach, (4) the dam excavation, and (5) the quarry/borrow area. Alternatively, if sufficient material of a specific type is not available on site, it can be (6) imported from nearby sources.

For the purpose of selecting the optimal dam type, different priority sequences for the sourcing of materials were adopted for the various dam types. These are discussed in **Section 10.4.1** to **10.4.2**.

10.4.1 Concrete faced rockfill dam (CFRD)

For the *concrete faced rockfill dam* material was sourced in the following priority sequence:

- (1) The identified quarry;
- (2) Material excavated for the dam foundation; and
- (3) Material obtained from the tunnel and portal excavation.

If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

10.4.2 Roller compacted concrete (RCC) gravity dam

For the *roller compacted concrete (RCC) gravity dam* material was sourced in the following priority sequence:

- (1) The identified quarry;
- (2) Material excavated for the dam foundation; and
- (3) Material obtained from the tunnel and portal excavation.

If sufficient material of a specific type was not available on site, appropriate material was imported from nearby commercial sources as a last resource.

10.5 COMPARISON IN TERMS OF CONSTRUCTION COST

Material quantities for all infrastructure components and for each dam option based on centre line natural ground levels (NGL) were calculated using the cost model described in Section 4. Following in Sections 10.5.1 to 10.5.3 are a description of each of the dam types investigated, with a summary of the cost comparison included in Section 10.5.4. All options investigated are summarised in Table 10.1 and the results of the balancing exercise are included in Appendix L and Appendix M.

10.5.1 Option 1: Concrete Faced Rockfill Dam (CFRD)

The concrete faced rockfill dam will consist of material obtained from the quarry situated within the dam basin. A gravel protection layer is placed on the downstream slope in order to provide a durable protective layer above the shale and dolerite shale mixture.

 Table 10.2 provides a summary of the balancing exercise for Option 1.

Table 10.2: Balancing of materials for Option 1

Material use		Α	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Impervious core	Semi-pervious fill: Residual silty clayey sand and sandy silty clay	Semi pervious fill: Highly weathered shale	Soft rockfill: Moderately weathered shale	Hard rockfill: Unweathered shale and dolerite	Imported dolerite
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
тс	otal required ⁽¹⁾	0	0	0	0	350 000	785 046	0
A) (2)	vailable on site	181 261	0	385 000	712 516	602 516	1 702 936	0
Im	ported ⁽³⁾	0	0	0	0	0	0	186 010
Тс	otal available	181 261	0	385 000	712 516	602 516	1 702 936	186 010
	Stockpiled ⁽⁴⁾	0	0	0	0	0	0	0
	Spoiled ⁽⁵⁾	165 963	0	293 211	574 833	252 516	0	0
ion	Dam forming	0	0	0	0	350 000	785 046	186 010
Act	Surplus ⁽⁷⁾	15 302	0	91 811	137 717	0	917 890	0
	Percentage remaining (%)	8	0	24	19	0	54	0
	TOTAL	181 261	0	385 000	712 516	602 516	1 702 936	186 10

The total volume of material of each specific type required for the (1) dam, and all additional infrastructure including the (2) diversion works, (3) intake structure, (4) spillway i.e. approach, chute and plunge pool, and (5) outlet works;

(2) The total volume of material of each specific type **available** on site from (1) the tunnel excavation, (2) the tunnel outlet portal, (3) the spillway approach, (4) the dam excavation, and (5) the quarry/borrow area;

(3) The total volume of material that have to be **imported from a commercial source**.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be **used in the forming of the specific dam type**.

(7) The total volume of surplus materials that is kept undisturbed in the respective quarries or borrow areas.

10.5.2 Option 2: Roller Compacted Concrete Dam (RCC)

The entire dam will be constructed with roller compacted concrete with a central spillway section. The aggregates to be used within the concrete will be obtained from the quarry identified in the dam basin.

Table 10.3 provides a summary of the balancing exercise for option 2.

Material use		Α	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Impervious core	Semi- pervious fill: Residual silty clayey sand and sandy silty clay	Semi pervious fill: Highly weathered shale	Soft rockfill: Moderately weathered shale	Hard rockfill: Unweathere d shale and dolerite	Imported dolerite
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Тс	otal required ⁽¹⁾	0	0	0	0	0	621 764	0
Available on site		114 155	0	385 000	680 203	570 203	1 665 236	0
Imported ⁽³⁾		0	0	0	0	0	0	0
Total available		114 155	0	385 000	680 203	570 203	1 665 236	0
	Stockpiled ⁽⁴⁾	0	0	0	0	0	0	0
	Spoiled ⁽⁵⁾	96 764	0	280 653	523 682	265 857	465 236	0
ion	Dam forming	0	0	0	0	0	621 764	0
Act	Surplus ⁽⁷⁾	17 391	0	104 347	156 521	304 346	578 236	0
	Percentage remaining (%)	15	0	27	23	53	35	0
	TOTAL	114 155	0	385 000	680 203	570 203	1 665 236	0

 Table 10.3:
 Balancing of materials for option 2

The total volume of material of each specific type required for the (1) dam, and all additional infrastructure including the (2) diversion works, (3) intake structure, (4) spillway i.e. approach, chute and plunge pool, and (5) outlet works;

(2) The total volume of material of each specific type **available** on site from (1) the tunnel excavation, (2) the tunnel outlet portal, (3) the spillway approach, (4) the dam excavation, and (5) the quarry/borrow area;

(3) The total volume of material that have to be imported from a commercial source.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be used in the forming of the specific dam type.

(7) The total volume of surplus materials that is kept undisturbed in the respective quarries or borrow areas.

10.5.3 Option 3: Composite Dam – Central RCC section with CFRD left and right flank

A composite dam comprising of a central spillway section constructed from roller compacted concrete with concrete faced rockfill left and right flank. The materials obtained from the quarry will be used for aggregates for the RCC and fill material for the shell of the concrete faced rockfill sections of the dam. The shell of the dam will be comprised of unweathered shale and dolerite with a durable protective layer on the downstream slope of the concrete faced rockfill sections of the dam.

Table 10.4 provides a summary of the balancing exercise for option 3.

Table 10.4:	Balancing of	materials	for option 3
-------------	--------------	-----------	--------------

Material use		А	В	С	D	E	F	G
		Overburden for soil: Organic topsoil	Impervious core	Semi- pervious fill: Residual silty clayey sand and sandy silty clay	Semi pervious fill: Highly weathered shale	Soft rockfill: Moderately weathered shale	Hard rockfill: Unweathere d shale and dolerite	Imported dolerite
		Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
Total required ⁽¹⁾		0	0	0	0	350 000	688 021	0
A \ (2)	ailable on site	141 315	0	385 000	675 455	565 455	1 659 698	0
Imported ⁽³⁾		0	0	0	0	0	0	0
Total available		141 315	0	385 000	675 455	565 455	1 659 698	0
Action	Stockpiled ⁽⁴⁾	0	0	0	0	0	0	0
	Spoiled ⁽⁵⁾	125 121	0	287 832	529 704	215 455	459 698	0
	Dam forming	0	0	0	0	350 000	688 021	0
	Surplus ⁽⁷⁾	16 195	0	97 168	145 752	0	511 979	0
	Percentage remaining (%)	11	0	25	22	0	31	0
	TOTAL	141 315	0	385 000	675 455	565 455	1 659 698	0

The total volume of material of each specific type required for the (1) dam, and all additional infrastructure including the (2) diversion works, (3) intake structure, (4) spillway i.e. approach, chute and plunge pool, and (5) outlet works;

(2) The total volume of material of each specific type **available** on site from (1) the tunnel excavation, (2) the tunnel outlet portal, (3) the spillway approach, (4) the dam excavation, and (5) the quarry/borrow area;

(3) The total volume of material that have to be **imported from a commercial source**.

(4) The total volume of material that need to be **stockpiled** for later use.

(5) The total volume of material that need to be **spoiled** in the designated waste disposal site.

(6) The total volume of material that need to be used in the forming of the specific dam type.

(7) The total volume of surplus materials that is kept undisturbed in the respective quarries or borrow areas.

10.5.4 Summary of cost comparison

The estimated dam costs (excl. VAT) for each dam type explained in the preceding sections are summarised in Table 10.5.
Option No.	Dam type	Cost (excl. VAT)
1	Concrete faced rockfill dam (CFRD)	R 549 087 699
2	Roller compacted concrete dam (RCC)	R 1 591 187 651
3	Composite comprising of a RCC central spillway section and CFRD left and right flank	R 1 125 550 530

 Table 10.5:
 Cost estimates for various dam types for the Langa Balancing Dam

Based on the *cost comparisons of different dam types* for Langa Balancing Dam the following is revealed:

- A concrete faced rockfill dam (Option 1) provides the lowest cost and maximises the use of the available materials on site;
- A roller compacted concrete dam is considerably more expensive in comparison to the other dam options;

10.6 COMPARISON IN TERMS OF AVAILABILITY OF MATERIAL AND MATERIAL HANDLING

10.6.1 On site

As the doleritic material are in most cases overlain by shales within the various quarries and excavations available on site, significant amounts of materials need to be moved and either (1) spoiled or (2) stockpiled depending on the need for it for the various dam type options.

As such the study team included various options in order to try and optimise the available material on site and minimise the (1) handling of material and (2) the volumes of material that will need to be spoiled.

10.6.2 From commercial sources

In addition, due to the significant impact that importation of material from commercial quarries have on the roads and residents within the vicinity of the dam site, the study team also included various options in order to try and optimise the available material on site and minimise the need for sourcing and transporting (1) dolerites and (2) sand from commercial quarries. The use of a concrete faced rockfill dam will render the need for importing material unnecessary as there is sufficient material available on site within the quarry located within the dam basin.

10.6.3 General

The estimated volumes of material that (1) will need to be spoiled and (2) will need to be imported from commercial sources are summarised in **Table 10.6**. Based on this table the following is revealed:

Table 10.6:	Material handling for various dam types for the Langa Balancing
	Dam

Option No.	Dam type	Total volume of material to	Total volume of material to be commercially sourced	
		(m ³)	Dolerite (m³)	Sand (m³)
1	Concrete faced rockfill dam (CFRD)	1 286 523	0	0
2	Roller compacted concrete dam (RCC)	1 632 192	0	0
3	Composite comprising of a RCC central spillway section and CFRD left and right flank	1 617 810	0	0

10.7 OTHER FACTORS INFLUENCING THE DAM TYPE SELECTION

Further to the comparison of the (1) cost as well as (2) availability of material and material handling comparisons of different dam types for Langa Balancing Dam as discussed in the preceding sections of this report, a number of other factors should also be considered in the selection of the optimal dam type. This includes the following:

10.7.1 Construction period

As described in this report, different dam types can be constructed at different construction rates. As such, due to the current significant water requirement deficits experienced in the proposed supply area of the uMkhomazi Water Project the rate at which the uMkhomazi Water Project can be implemented plays a significant role in the final decision on the optimal dam type.

Therefore, the study team had a look at the estimated construction times of a (1) roller compacted concrete (RCC) gravity dam, (2) earth core rockfill dam (ECRD), and (3) concrete faced rockfill dam (CFR dam) respectively.

According to this assessment the CFR dam can be constructed at a faster pace than the RCC dam, hence, from a construction period point of view, the CFR dam are favoured.

10.8 COMPARISON AND CONCLUSION

The above-mentioned activities are summarised in **Table 10.7** for the three cost options.

Reference	Acrost	Order of option preference			
this report	Азресі	1	2	3	
10.5.4	Lowest construction cost (R Million excluding VAT)	Option 1	Option 3	Option 2	
10.7.1	Shortest construction period	Option 1	Option 3	Option 2	
10.6	Less volume of material to be spoiled	Option 1 (1 287)	Option 3 (1 618)	Option 2 (1 632)	
10.7.2	Visual impact		All equal		
10.7.3	Delay/damages risk involved with river diversion	All equal			

Table 10.7:Summary of the three five preferred dam type options (with regard
to various aspects for Langa Balancing Dam)

From **Table 10.7** the following is clear:

- Option 1, the concrete faced rockfill dam, is the best suited for the Langa Balancing Dam site position as it provides the lowest cost of the investigated options and the least amount of material that will need to be spoiled; and
- A roller compacted concrete dam is significantly more expensive in comparison to other dam options.

10.9 RECOMMENDATION

It is recommended that the best dam type to be considered for Langa Balancing Dam's feasibility design is a *Concrete Faced Rockfill Dam (CFRD)*.

11 SENSITIVITY ANALYSIS

11.1 INTRODUCTION

Following a meeting with DWA: Infrastructure Development on 29 May 2014, a request was made that the Study Team should undertake a sensitivity analysis to finalise the dam type selection for the proposed Smithfield and Langa dams and assess the risk on a few critical parameters. Subsequent to this request, a Variation Order on the original uMkhomazi Water Project was granted to undertake this task, amongst others.

The critical parameters that were addressed as part of this sensitivity analysis are as follows:

- Deeper foundation depth and increase in volumes of excavation;
- Haulage distance if quarry site does not deliver adequate construction materials; and
- Possible impacts of climate change on the magnitude of the floods.

This section describes the assumptions and calculations for assessing the sensitivity of each parameter described above and the results obtained from each assessment, as well as the overall recommendation from the sensitivity analysis.

11.2 BASE OPTIONS CONSIDERED

The four primary main dam type options were considered in this analysis, namely RCC gravity dam, zoned ECRD, composite dam (RCC gravity and zoned ECRD) and zoned CFRD. The options with the lowest cost identified previously in this report for each of the above dam types were used in this analysis, namely option 1, 4, 6 and 7.

11.3 SENSITIVITY RESULTS

11.3.1 Increased foundation depth and excavations

a) Smithfield Dam

This item dealt with the potential for variation in the depth of the foundations from what was assumed. This would necessitate increased excavations below concrete

structures, and for the cores of embankment dams to be founded on lower levels. For the purpose of this sensitivity analysis, the effect of having the founding level 2 m lower than originally assumed was investigated.

The effect of the increased foundation depths on the saddle dam was not taken into account in this analysis, because the saddle dam was common to all main dam types under investigation.

The cost model was used to estimate the influence that a lower foundation depth would have on the four dam types. This was done by increasing the "depth to founding level" (RCC) or the "depth to trench founding level" (ECRD and CFRD) in the main dam long section input table. The increase in excavation volume and volume of materials required for dam forming were then assessed, and percentage-based increases were noted. These are summarised in Table 11.1.

Table 11.1:	Effect of increased foundation depth on cost of dam type options,
	per item (Smithfield Dam)

	Increase in costs (%)					
Main dam type	Everyotion	Dam forming materials				
	Excavation	Concrete	Clay core	Transition	Rockfill	
RCC gravity	19%	7%	-	-	-	
Zoned ECRD	2%	-	3%	-	-	
Zoned CFRD	9%	4%	-	5%	1%	
Composite (RCC + ECRD)	7%	6%	2%	-	0%	

As can be seen, increased foundation depths have the biggest impact on the RCC gravity dam type. These percentage increases were applied to the costs originally determined in this dam type selection process (Appendix G). Table 11.2 shows the actual cost increases incurred for each of the dam type options.

Table 11.2:Effect of increased foundation depth on cost of dam type options,
in total (Smithfield Dam) (R, excl. VAT)

Dom		Original cost	Increase in costs			Revised cost
type option	Main dam type	Total	Excavation	Dam forming materials	Total	Total
1	RCC gravity	2 248 298 426	15 549 198	123 558 704	139 107 902	2 387 406 327
4	Zoned ECRD	1 073 000 404	4 019 604	1 827 843	5 847 447	1 078 847 851
6	Composite (RCC + ECRD)	1 433 356 494	8 262 943	43 959 035	52 221 978	1 485 578 473
7	Zoned CFRD	1 179 663 693	22 204 161	9 199 108	31 403 270	1 211 066 963

This table shows that the order of preference of the dam types does not change with the revised costs for increased foundation depth. This is valid for deeper foundation levels below the outer sides of the embankment dams. Therefore, it can be concluded that the risk of a variation in dam type based on this parameter is

b) Langa Dam

negligible for Smithfield Dam.

The same assessment was undertaken on the dam type selection for Langa Dam, in the same fashion as described for Smithfield Dam.

The percentage-based increase in excavation volume and volume of materials required for dam forming are summarised in Table 11.3.

Table 11.3:	Effect of increased foundation depth on cost of dam type options,
	per item (Langa Dam)

	Increase in costs (%)					
Main dam type	Execution	Dam forming materials				
	Excavation	Concrete	Clay core	Transition	Rockfill	
Zoned CFRD	19%	8%	-	9%	4%	
RCC gravity	24%	11%	-	-	-	
Composite (RCC + CFRD)	25%	9%	-	14%	8%	

Increased foundation depths have a similar impact on all of the dam types investigated for Langa Dam, but with the biggest impact on the RCC gravity dam and composite dam types. These percentage increases were applied to the costs originally determined in this dam type selection process (Appendix M). Table 11.4 shows the actual cost increases incurred for each of the dam type options.

Table 11.4:Effect of increased foundation depth on cost of dam type options,
in total (Langa Dam) (R, excl. VAT)

Dom		Original cost	Increase in costs			Revised cost
type option	Main dam type n	Total	Excavation	Dam forming materials	Total	Total
1	Zoned CFRD	199 688 230	19 703 037	5 400 522	25 103 559	224 791 789
2	RCC gravity	742 473 438	22 346 668	71 429 855	93 776 523	836 249 962
3	Composite (RCC + CFRD)	510 705 559	26 921 899	36 118 055	63 039 954	573 745 512

This table shows that, as found with the investigation into Smithfield Dam, the order of preference of the dam types does not change with the revised costs for

increased foundation depth. Therefore, it can be concluded that the risk of a variation in dam type based on this parameter is negligible for Langa Dam as well.

11.3.2 Haulage distance, relating to material availability

This item related to the possibility that the quarries and borrow areas identified to supply the rockfill and earthfill material would not be adequate for forming the embankments and for use as concrete aggregate, and therefore excess haulage and cost for acquiring materials may be experienced to source other materials.

a) Smithfield Dam

Several zoning options were identified for the different embankment dam types during the dam type selection process for Smithfield Dam.

- For the ECRD, the rockfill shell for the primary zoning option comprises dolerite (slightly weathered and unweathered) only. The alternative ECRD zoning option comprises dolerite (as above) and shale (unweathered to moderately weathered).
- For the CFRD, the rockfill for the primary zoning option comprises dolerite (slightly weathered and unweathered). The first alternative zoning option comprises dolerite (as above) and shales (unweathered to moderately weathered). The second alternative zoning option comprises two types of dolerite, namely slightly weathered and unweathered.

Section 7.5 of this report compares the construction cost of all of the investigated dam types, and shows that the ECRD options are most and second most preferable of the options, with a CFRD option being third most preferable. In addition, all of the rockfill main dam types and zoning options are preferable to the composite and RCC gravity dam types. Table 11.5 summarises the estimated dam costs (excl. VAT) for each dam type explained in Section 7.5.

 Table 11.5: Cost estimates for various dam types for Smithfield Dam

Option	Dam type		Cost (R million
No.	Main Dam	Saddle Dam	excl. VAT)
1	Roller compacted concrete (RCC) gravity	Zoned earthfill embankment dam	R 4 382
2	Earth core rockfill dam (zoning option 1)	Zoned earthfill embankment dam	R 2 339
3	Concrete faced rockfill dam (zoning option 1)	Zoned earthfill embankment dam	R 2 695
4	Zoned earth core rockfill dam (zoning option 2)	Zoned earthfill embankment dam	R 2 029
5	Zoned earth core rockfill dam (zoning option 2)	Zoned earth core rockfill dam (zoning option 2)	R 2 227
6	Composite dam (RCC gravity and zoned ECRD (zoning option 2))	Zoned earthfill embankment dam	R 2 941
7	Zoned concrete faced rockfill dam (option 1) (zoning option 2)	Zoned earthfill embankment dam	R 2 231
8	Zoned concrete faced rockfill dam (option 2) (zoning option 3)	Zoned earthfill embankment dam	R 2 412
9	Zoned earthfill embankment dam	Zoned earthfill embankment dam	-
10	Composite dam (RCC with zoned ECRD on the one flank and zoned earthfill embankment dam on the other)	Zoned earthfill embankment dam	-

This shows that, should the situation arise where the intended material is not available for Option 4 (ECRD zoning option 2), the dam type for Smithfield Dam would most likely not change due to an alternative zoning option still being preferable to other dam type options.

In addition to this high-level assessment, an assessment was undertaken to estimate what cost impact there would be to import materials where availability from quarries and borrow areas is limited. It was assumed that 50% of the required rockfill, impermeable core, earthfill and concrete aggregate materials would need to be imported. The impact on the ranking of the dam type options is shown in **Table 11.6**.

Table 11.6:	Impact of importing material on the ranking of dam type options for
	Smithfield Dam

Pank	Dam typ	e option
Nalik	Original	Revised
1	Option 4 (Zoned ECRD)	Option 4 (Zoned ECRD)
2	Option 5 (Zoned ECRD)	Option 5 (Zoned ECRD)
3	Option 7 (Zoned CFRD)	Option 3 (CFRD)
4	Option 2 (ECRD)	Option 7 (Zoned CFRD)
5	Option 3 (CFRD)	Option 2 (ECRD)
6	Option 8 (Zoned CFRD)	Option 8 (Zoned CFRD)
7	Option 6 Composite (RCC + ECRD)	Option 6 Composite (RCC + ECRD)
8	Option 1 (RCC)	Option 1 (RCC)

The results in the above table indicate a variation in preference of dam type only in the mid-range, with the most preferable and least preferable dam type options remaining the same. This further corroborates the finding that inadequate rockfill and earthfill material will most likely not have an impact on the selection of a dam type for Smithfield Dam.

b) Langa Dam

Different zoning options for the embankment dam type (CFRD) were not identified for Langa Dam. However, the principle described above for Smithfield Dam would apply. It was assumed that 50% of the required rockfill and concrete aggregate materials would need to be imported from the identified commercial sources.

The same assessment of the effect of importing material described for Smithfield Dam was carried out for Langa Dam. Table 11.7 summarises the results.

Table 11.7:	Impact of importing material on the ranking of dam type options for
	Langa Dam

Rank	Dam type option									
	Original	Revised								
1	Option 1 (CRFD)	Option 1 (CRFD)								
2	Option 3 Composite (RCC + CFRD)	Option 3 Composite (RCC + CFRD)								
3	Option 2 (RCC)	Option 2 (RCC)								

The results in the above table indicate no variation in preference of dam types. This further corroborates the finding that inadequate rockfill and earthfill material will most likely not have an impact on the selection of a dam type for Langa Dam.

11.3.3 Impact of climate change on Smithfield Dam

A detailed climate change impact assessment was undertaken on Smithfield Dam as part of the Variation Order mentioned in **Section 11.1**. Its purpose was to assess the impact on the flood design capacity and the dam's ability to accommodate future flood peaks, and the impact on the yield of the dam. This assessment is documented in detail in the report titled *Climate Change Impact Assessment (Engineering Feasibility Design Report: Write-up 6 (P WMA* 11/U10/00/3312/3/1/11)).

According to the above-mentioned report, a range of flood hydrographs with various peaks were routed through the spillway arrangement for Smithfield Dam for the purpose of testing the flood design capacity of Smithfield Dam to accommodate future climatic conditions. These flood peaks ranged from the historically-based SEF in increasing 5% increments up to a maximum flood of the SEF plus 30%.

This routing analysis showed that a 30% higher flood can be safely passed through the spillway without overtopping the embankment.

The proposed NOC level of 936 masl, including a parapet wall, will accommodate the settlement of the wall, the Probable Maximum Flood and the effect of climate change up to a 30% flood increase. Therefore, it was concluded that the impact of climate change on Smithfield Dam would not change the preference of the dam type selected.

11.4 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this sensitivity analysis was to assess the impact of certain critical parameters on the dam type selection of Smithfield and Langa Dams. These critical parameters were foundation depth, increase in volumes of excavation, haulage distance and possible impacts of climate change.

The findings for each parameter were as follows:

• Foundation depth and increase in volumes of excavation: The cost impact of increasing the dam foundation depths is most significant for dam types that

were identified as the least preferable, namely RCC gravity for Smithfield Dam and RCC gravity and composite (RCC & CFRD) for Langa Dam. This therefore means that the selected dam types only become more preferable by changing this parameter.

- Haulage distance, relating to material availability: A limit in the availability of material from quarries and borrow areas will most likely not affect the preference of dam type for Smithfield Dam or Langa Dam. This is because several zoning options have been identified, so a shortage in one type of rockfill material will be able to be supplemented by another type. In addition, importing part of the material requirement will most likely not affect the dam type preferences.
- Possible impacts of climate change: Climate change will not impact the dam type preference for Smithfield Dam, as estimated provisions that were originally made in terms of the non-overspill crest remain sufficient.

Based on these findings, it is recommended that the dam types that were concluded as preferable in the preceding portion of this report remain as the selected dam types. This is summarised in **Section 12**.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 SMITHFIELD DAM

The best dam type to be considered for Smithfield Dam's feasibility design is *Option 4* which is (1) a *zoned earthcore rockfill dam* for the main dam and (2) a *zoned earthfill embankment dam* for the saddle dam.

12.2 LANGA BALANCING DAM

The best dam type to be considered for Langa Balancing Dam's feasibility design *Option 1* which is a *Concrete Faced Rockfill Dam (CFRD)*.

13 REFERENCES

- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/2/2 -Water requirements and return flows report. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/2/3 -Water resources yield assessment report. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/1/3
 Supporting document 3: Optimization of scheme configuration. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/1/4
 Supporting document 4: Cost model. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). *The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2 -Geotechnical report.* Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2/1
 Supporting document 1: Probabilistic seismic hazard analysis (Smithfield Dam). Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2/2
 Supporting document 2: Seismic refraction investigation at the proposed uMkhomazi Water Project Phase 1. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2/3

- Supporting document 3: Smithfield Dam: Materials and geotechnical investigation. Pretoria, South Africa: Department of Water Affairs (DWA).

- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2/4
 Supporting document 4: Langa Dam: Materials and geotechnical investigation. Pretoria, South Africa: Department of Water Affairs (DWA).
- AECOM, AGES, MMA, & Urban-Econ. (2014). The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water; P WMA 11/U10/00/3312/3/2/5
 Supporting document 5: Conveyance system: Materials and geotechnical investigation. Pretoria, South Africa: Department of Water Affairs (DWA).
- BKS (Pty) Ltd. (2012). Newabeni Off-channel Storage Dam Feasibility Study: Module 1: Technical Study; Supporting Report 3: Design and Cost Estimates (Report no. P WMA 11/T52/00/3311/3. Pretoria, South Africa: BKS (Pty) Ltd.
- Consult 4. (1994). Vaal Augmentation Planning Study; Guidelines for the Preliminary Sizing, Costing and Engineering Economic Evaluation of Planning Options (P C000/00/14394. Pretoria: Department of Water Affairs (DWA).
- Mohale Consultants Group. (1998). Lesotho Highlands Water Project; Consulting Services for Mohale Dam; Stage 1 Services; Tender Design and Preparation of Tender Documents; Interim Design Report (Report no. 1017-1.7-02). Maseru, Lesotho: Kingdom of Lesotho Highlands Development Authority.
- Ninham Shand. (1999). *Mkomazi/Mooi-Mgeni Transfer Scheme Pre-feasibility Study; Mkomazi-Mgeni Transfer Scheme: Main Report (PB U100-00-0499).* Pretoria, South Africa: Department of Water Affairs (DWA).
- Shaw, D. Q. (2013). Roller compacted concrete dams The state of the art 2013. Pretoria, South AFrica: ARQ (Pty) Ltd.
- South African Bureau of Standards. (1984). South African Bureau of Standards: Standardized Specification for Civil Engineering Construction - SABS 1200 DE-1984. Pretoria: South African Bureau of Standards.
- South African National Committee on Large Dams. (1990). Interim Guidelines on Freeboard for Dams. Pretoria: SANCOLD.

Appendix A

Figures

P WMA 11/U10/00/3312/3/1/5 - Engineering feasibility design report: Supporting document 5: Dam type selection report

uMkhomazi Water Project Phase 1 : Module 1 Technical Feasibility Study : Raw Water (uMWP1-1/RW) LANGA BALANCING DAM FINAL PREFERRED LAYOUT

FI	GI	JR	Е	A.9	9
	<u> </u>		_	<i></i>	•

 SGALE:
 1:10000

 SATE:
 2013 12 02

 SWMM:
 SIG82EL

 GIEGGE:
 A GOM33IN4

 APPROVED:
 D 3ADEM KORST

Appendix B

Breakdown of RCC and CVC

rates

Rate breakdown for CVC

<u>1 – CVC placing</u>		
Materials	m ³	R 1136.42
Mixing	m ³	R 171.98
Transport	m ³	R 135.26
Cooling	m ³	R 218.11
Vibration	m ³	R 28.74
<u>Subtotal</u>		<u>R 1690.52</u>
<u>2 - Other costs</u>		
Placing labour	m ³	R 171.95
Placing plant	m ³	R 56.30
Joints cleaning	m ³	R 63.09
<u>Subtotal</u>		<u>R 291.33</u>
<u>Total</u>		<u>R 1981.85</u>

Rate breakdown for RCC

<u>1 – RCC Placing</u>		
Materials	m³	R 740.25
Mixing	m³	R 119.15
Transport	m ³	R 40.00
Spread and compact	m ³	R 116.90
Subtotal		R 1016.30
<u>2 - Other costs</u>		
Greencut joints	m³	R 16.88
Curing	m³	R 16.45
RCC bedding mortar	m²	R 61.42
RCC bedding concrete	m ²	R 0.42
Treatment of cold RCC layer	m ²	R 1.95
Filler and levelling concrete	m ³	R 1.73
Preparation of receiving surface	m ³	R 1.48
Test section	m ³	R 26.24
Crack inducers in upstream face	m	R 0.21
Crack inducers in downstream face	m	R 0.35
Crack inducers (Groutable)	m	R 1.23
Set ups for 150mm core drilling in RCC	No	R 0.44
Standby for 150 mm or core drilling rig	Hrs	R 0.21
Drilling and recovery of 150 mm core in RCC	m	R 9.64
Water pressure testing in 150 mm core holes in RCC	No	R 0.22
Grouting of core holes	t	R 1.54
Sub total		R 140.41

Total

<u>R 1156.71</u>

Appendix C

Smithfield Dam: Results from

slope stability analysis

Table C.1: Soil parameters

Material	Description	Unit weight (kN/m³)	Cohesion (kPa)	Angle of internal friction (Ø) (Degrees)
A	Organic topsoil	13	23	26
В	Clayey sand	17	23	26
С	Completely and highly weathered shale	20.1	0	35
D	Unweathered to moderately weathered shale	20.6	0	38
E	Highly and moderately weathered dolerite	20.6	0	36
F	Slightly weathered and unweathered dolerite	21.6	0	40
G	CVC concrete	23	500	35

kment Type	Analysis	Outer Shell	Inner Shell	Core	ransition Zone		200		Upstream slope				Downstream	Slope	
bar					-	Ū	ō	Steady St	tate (1)	Seisi	mic ⁽²⁾	Steady	State (1)	Seisr	nic ⁽²⁾
E						US	DS	FOS ⁽³⁾	Req (4)	FOS ⁽³⁾	Req (4)	FOS ⁽³⁾	Req (4)	FOS ⁽³⁾	Req (4)
Earthfill embankment	1	С	-	В	С	2.5	2	1.81 (ok)	> 1.5	1.22 (ok)	>1	1.44 (Not ok)	> 1.5	1.17 (ok)	> 1
	2	С	-	В	С	3	2.5	2.13 (ok)	> 1.5	1.38 (ok)	> 1	1.79 (ok)	> 1.5	1.41 (ok)	> 1
Forthooro rockfill dom	1	F	-	В	С	1.75	1.7	1.5 (ok)	> 1.5	1.09 (ok)	> 1	1.54 (ok)	> 1.5	1.26 (ok)	> 1
Earthcore focking dam	2	F	-	В	С	1.8	1.75	1.54 (ok)	> 1.5	1.12 (ok)	> 1	1.56 (ok)	> 1.5	1.27 (ok)	> 1
	1	F	-	-	-	1.4	1.4	1.62 (ok)	> 1.5	1.20 (ok)	> 1	1.21 (not ok)	> 1.5	1.01 (ok)	> 1
Concrete faced rockfill dam	2	F	-	-	-	1.4	1.5					1.46 (not ok)	> 1.5	1.20 (ok)	> 1
	3	F	-	-	-	1.4	1.7					1.51 (ok)	> 1.5	1.24 (ok)	> 1
	4	F	-	-	-	1.4	1.75					1.54 (ok)	> 1.5	1.26 (ok)	> 1

Table C.2: Slope stability analysis results

Table C.3: Slope stability analysis results

ıkment Type	sis	Shell	ection		tion Zone		opes			. Upstream slope			Down stream	Slope	
lbai	aly	ter	ese	e	sus	ā	ō	Steady	State (1)	Seis	mic ⁽²⁾	Steady	State (1)	Seis	mic (*)
Ē	An	ō	ĥ	ပိ	Ţ	US	DS	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req (4)	FOS ⁽³⁾	Req (4)	FOS ⁽³⁾	Req ⁽⁴⁾
	1	F	E	-	-	1.4	1.4					1.09 (Not ok)	> 1.5	0.89 (Not ok)	>1
Onting 4 Zanad	2	F	E	-	-	1.4	1.5					1.13 (Not ok)	> 1.5	0.94 (Not ok)	> 1
Concrete faced	3	F	E	-	-	1.4	1.7 5					1.30 (Not ok)	> 1.5	1.06 (ok)	> 1
TOCK III Gall	4	F	E	-	-	1.4	1.8					1.35 (Not ok)	> 1.5	1.10 (ok)	> 1
	5	F	E	-	-	1.4	2					1.50 (ok)	> 1.5	1.20 (ok)	> 1
	1	F	D	-	-	1.4	1.4					1.13 (Not ok)	> 1.5	0.89 (Not ok)	> 1
	2	F	D	-	-	1.4	1.5					1.21 (Not ok)	> 1.5	1.01 (ok)	> 1
Concrete faced	3	F	D	-	-	1.4	1.7 5					1.40 (ok)	> 1.5	1.19 (ok)	> 1
rock till dam	4	F	D	-	-	1.4	1.8					1.55 (ok)	> 1.5	1.27 (ok)	>1
	5	F	D	-	-	1.4	2					1.60 (ok)	> 1.5	1.29 (ok)	> 1

ment Type s nell tion zone						062			- Upstream slope	- 121		Downstream	Slope	- 10	
bank	alysis	er Sł	sect	e	nsitic	0	Die	Steady	Steady State ⁽¹⁾		mic	Steady	State ''	Seismic (2)	
E	Ana	Out	Toe	Cor	Tra	US	DS	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾
	1	F	D	В	С	1.4	1.4	1.20 (Not ok)	> 1.5	0.89 (Not ok)	> 1	1.20 (Not ok)	> 1.5	1.00 (ok)	> 1
	2	F	D	В	С	1.5	1.5	1.28 (Not ok)	> 1.5	0.94 (Not ok)	> 1	1.28 (Not ok)	> 1.5	1.06 (ok)	> 1
Option 2 Zoned	3	F	D	В	С	1.7	1.7	1.44 (Not ok)	> 1.5	1.05 (ok)	> 1	1.48 (Not ok)	> 1.5	1.21 (ok)	> 1
rockfill fill dam	4	F	D	В	С	1.7 5	1.7 5	1.47 (Not ok)	> 1.5	1.07 (ok)	> 1	1.50 (ok)	> 1.5	1.09 (ok)	> 1
	5	F	D	В	С	1.8	1.8	1.52 (ok)	> 1.5	1.10 (ok)	> 1	1.56 (ok)	> 1.5	1.27 (ok)	> 1
	6	F	D	В	С	2	2	1.68 (ok)	> 1.5	1.20 (ok)	> 1	1.71 (ok)	> 1.5	1.38 (ok)	> 1

Table C.4: Slope stability analysis results

Figure C.1: Earthfill dam: Upstream slope 1:2.5 (V:H), Downstream slope 1:2 (V:H), Analysis 1.1, Downstream, dam full with steady state flow

Figure C.2: Earthfill dam: Upstream slope 1:2.5 (V:H), Downstream slope 1:2 (V:H), Analysis 1.2, Downstream, dam full with seismic action

Figure C.3: Rockfill dam: Upstream slope 1:2.5 (V:H), Downstream slope 1:2 (V:H), Analysis 1.3, Upstream, dam full with seismic action

Figure C.4: Rockfill dam: Upstream slope 1:2.5 (V:H), Downstream slope 1:2 (V:H), Analysis 1.4, Upstream, dam full with seismic action

Figure C.5: Earthfill dam: Upstream slope 1:3 (V:H), Downstream slope 1:2.5 (V:H), Analysis 2.1, Downstream, dam full with steady state flow

Figure C.6: Earthfill dam: Upstream slope 1:3 (V:H), Downstream slope 1:25 (V:H), Analysis 2.2, Downstream, dam full with seismic action

Figure C.7: Rockfill dam: Upstream slope 1:3 (V:H), Downstream slope 1:2.5 (V:H), Analysis 2.3, Upstream, dam full with steady state

Figure C.8: Rockfill dam: Upstream slope 1:3 (V:H), Downstream slope 1:2.5 (V:H), Analysis 2.4, Upstream, dam full with seismic action

Figure C.9: Earthcore rockfill dam: Upstream slope 1.75 (V:H), Downstream slope 1:1.7 (V:H), Analysis 1.1, Downstream, dam full with steady state flow

Figure C.10: Earthcore rockfill dam: Upstream slope 1.75 (V:H), Downstream slope 1:1.7 (V:H), Analysis 1.2, Downstream, dam full with seismic action

Figure C.11: Earthcore rockfill dam: Upstream slope 1.75 (V:H), Downstream slope 1:1.7 (V:H), Analysis 1.3, Upstream, dam full with steady state flow

Figure C.12: Earthcore rockfill dam: Upstream slope 1.75 (V:H), Downstream slope 1:1.7 (V:H), Analysis 1.4, Downstream, dam full with seismic action

Figure C.13: Earthcore rockfill dam: Upstream slope 1.8 (V:H), Downstream slope 1:1.75 (V:H), Analysis 2.1, Downstream, dam full with steady state flow

Figure C.14: Earthcore rockfill dam: Upstream slope 1.8 (V:H), Downstream slope 1:1.75 (V:H), Analysis 2.2, Downstream, dam full with seismic action

Figure C.15: Earthcore rockfill dam: Upstream slope 1.8 (V:H), Downstream slope 1:1.75 (V:H), Analysis 2.3, Upstream, dam full with steady state flow

Figure C.16: Earthcore rockfill dam: Upstream slope 1.8 (V:H), Downstream slope 1:1.75 (V:H), Analysis 2.2, Upstream, dam full with seismic action

Figure C.17: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.4 (V:H), Analysis 1.1, Downstream, dam full with steady state flow

Figure C.18: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.4 (V:H), Analysis 1.2, Downstream, dam full with seismic load

Figure C.19: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.4 (V:H), Analysis 1.3, upstream, dam full with steady state flow

Figure C.20: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.4 (V:H), Analysis 1.4, Upstream, dam full with seismic load

Figure C.21: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.5 (V:H), Analysis 2.1, Downstream, dam full with steady state flow

Figure C.22: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.5 (V:H), Analysis 2.2, Downstream, dam full with seismic load

Figure C.23: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.7 (V:H), Analysis 3.1, Downstream, dam full with steady state flow

Figure C.24: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.7 (V:H), Analysis 3.2, Downstream, dam full with seismic action

Figure C.25: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.75 (V:H), Analysis 4.1, Downstream, dam full with steady state flow

Figure C.26: Concrete faced rockfill dam: Upstream slope 1:1.4 (V:H), Downstream slope 1:1.75 (V:H), Analysis 4.2, Downstream, dam full with seismic action

Figure C.27: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.1 Dam full and steady state flow

Figure C.28: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.2 Seismic load

Figure C.29: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.1 Dam full and steady state flow

Figure C.30: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.2 Seismic load

Figure C.31: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.75 (V:H), Analysis 3.1 Dam full and steady state flow

Figure C.32: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 3.2 Seismic load

Figure C.33: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.8 (V:H), Analysis 4.1 Dam full and steady state flow

Figure C.34: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.8 (V:H), Analysis 4.2 Seismic load

Figure C.35: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), Downstream slope 1:2 (V:H), Analysis 5.1 Dam full and steady state flow

Figure C.36: Zoned CFRD Option 1: Upstream slopes 1:1.4 (V:H), downstream slope 1:2 (V:H), Analysis 5.2 Seismic load

Figure C.37: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.1 Dam full and steady state flow

Figure C.38: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.2 Seismic load

Figure C.39: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 2.1 Dam full and steady state flow

Figure C.40: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.2 Seismic load

Figure C.41: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.75 (V:H), Analysis 3.1 Dam full and steady state flow

Figure C.42: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.75 (V:H), Analysis 3.2 Seismic load

Figure C.43: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.8 (V:H), Analysis 4.1 Dam full and steady state flow

Figure C.44: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.8 (V:H), Analysis 4.2 Seismic load

Figure C.45: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:2 (V:H), Analysis 5.1 Dam full and steady state flow

Figure C.46: Zoned CFRD Option 2: Upstream slopes 1:1.4 (V:H), downstream slope 1:2 (V:H), Analysis 5.2 Seismic load

Figure C.47: Zoned earth core rock fill dam: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.1 Dam full and steady state flow

Figure C.48: Zoned earth core rock fill dam: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.2 Seismic load

Figure C.49: Zoned earth core rock fill dam: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.3 Dam full and steady state flow

Figure C.50: Zoned earth core rock fill dam: Upstream slopes 1:1.4 (V:H), downstream slope 1:1.4 (V:H), Analysis 1.4 Seismic load

Figure C.51: Zoned earth core rock fill dam: Upstream slopes 1:1.5 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.1 Dam full and steady state flow

Figure C.52: Zoned earth core rock fill dam: Upstream slopes 1:1.5 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.2 Seismic load

Figure C.53: Zoned earth core rock fill dam: Upstream slopes 1:1.5 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.3 Dam full and steady state flow

Figure C.54: Zoned earth core rock fill dam: Upstream slopes 1:1.5 (V:H), downstream slope 1:1.5 (V:H), Analysis 2.4 Seismic load

Figure C.55: Zoned earth core rock fill dam: Upstream slopes 1:1.7 (V:H), downstream slope 1:1.7 (V:H), Analysis 3.1 Dam full and steady state flow

Figure C.56: Zoned earth core rock fill dam: Upstream slopes 1:1.7 (V:H), downstream slope 1:1.7 (V:H), Analysis 3.2 Seismic load

Figure C.57: Zoned earth core rock fill dam: Upstream slopes 1:1.7 (V:H), downstream slope 1:1.7 (V:H), Analysis 3.3 Dam full and steady state flow

Figure C.58: Zoned earth core rock fill dam: Upstream slopes 1:1.7 (V:H), downstream slope 1:1.7 (V:H), Analysis 3.4 Seismic load

Figure C.59: Zoned earth core rock fill dam: Upstream slopes 1:1.75 (V:H), downstream slope 1:1.75 (V:H), Analysis 4.3 Dam full and steady state flow

Figure C.60: Zoned earth core rock fill dam: Upstream slopes 1:1.75 (V:H), downstream slope 1:1.75 (V:H), Analysis 4.4 Seismic load

Figure C.61: Zoned earth core rock fill dam: Upstream slopes 1:1.75 (V:H), downstream slope 1:1.75 (V:H), Analysis 5.1 Dam full and steady state flow

Figure C.62: Zoned earth core rock fill dam: Upstream slopes 1:1.8 (V:H), downstream slope 1:1.8 (V:H), Analysis 5.2 Seismic load

Figure C.63: Zoned earth core rock fill dam: Upstream slopes 1:1.8 (V:H), downstream slope 1:1.8 (V:H), Analysis 5.1 Dam full and steady state flow

Figure C.64: Zoned earth core rock fill dam: Upstream slopes 1:1.8 (V:H), downstream slope 1:1.8 (V:H), Analysis 5.4 Seismic load

Figure C.65: Zoned earth core rock fill dam: Upstream slopes 1:1.8 (V:H), downstream slope 1:1.8 (V:H), Analysis 5.3 Dam full and steady state flow

Figure C.66: Zoned earth core rock fill dam: Upstream slopes 1:1.8 (V:H), downstream slope 1:1.8 (V:H), Analysis 5.4 Seismic load

Figure C.67: Zoned earth core rock fill dam: Upstream slopes 1:2 (V:H), downstream slope 1:2 (V:H), Analysis 6.1 Dam full and steady state flow

Figure C.68: Zoned earth core rock fill dam: Upstream slopes 1:2 (V:H), downstream slope 1:2 (V:H), Analysis 6.4 Seismic load

Figure C.69: Zoned earth core rock fill dam: Upstream slopes 1:2 (V:H), downstream slope 1:2 (V:H), Analysis 6.3 Dam full and steady state flow

Figure C.70: Zoned earth core rock fill dam: Upstream slopes 1:2 (V:H), downstream slope 1:2 (V:H), Analysis 6.4 Seismic load

Appendix D

Smithfield Dam: Typical cross-

sections for each of the chosen

dam types

Appendix E Smithfield Dam: Long-sections of geotechnical (foundation and quarry) investigations

Appendix F

Smithfield Dam: Results from

balancing exercise - Balancing

spreadsheets

Table F.1: Option 1: Main dam - Roller compacted concrete (RCC) graves	∕ity;	Saddle
dam -zoned earthfill embankment dam balancing spread	shee	≥t

			AC & NIFAU	ADDLE DAIVI WALLS	+ DIVERSION TUNNE	ELS						
				A	в	U	D	ш	u.	U		
								Highly and				
				Overburden tor	Clayey sand	Completely and	Unweathered to	moderately	Slightly weathered			
			Material	soil: Organic	transported	highly weathered	moderately		and unweathered	Imported sand	SUM	
	Configuration		(source)	topsoil	surface material	shales	weathered shales	weathered	dolerite			(ZAR)
-								dolerite				
_				Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	
				(, m)	(m')	(m_)	(m')	(m')	(m')	(m,)	(m)	
		(1) Required material - N	Main wall									
			(a) Core (impervious earthfill)								0	
			(b) Upstream and downstream shells (semi pervious earthfill)								0	
	((c) Rockfill (Impervious laver)								0	
			(d) Rin-ran									
			(a) Cruck layor								o c	
											0	
			(f) Sand layer transition zone								0	
			(g) Blanket and chimney drains								0	
			(h) Concrete						1 050 965		1 050 965	
		(2) Required material - S	Saddle wall									
			lal Core (impervious earthfill)		336 835						336 835	
			(b) Thostream and downstream shells (semi nervious earthfill)			861 785					950.035 861.785	
						CO / TOO					CO/ TOO	
			(c) Kockfill (Impervious layer)								0	
			(d) Rip-rap						19876		19876	
			(e) Gravel layer						39 752		39 752	
			(f) Sand layer transition zone							19 876	19876	
			(g) Blanket and chimney drains							666 669	66 669	
			(h) Concrete aggregate								0	
		(3) Required material - I	Infrastructure									
			l'a) Diversion works concrete aggregate						000 6		000 6	
									000 7		2 000	
			(b) Intake structure concrete aggregate						6 000		6 000	4 382 157 854
			(c) Spillway and chute concrete aggregate								0	
			(d) Outlet works concrete aggregate						1 300		1 300	
			(e) Apron slab						3 700		3 700	
			TOTAL REQUIRED	0	336 835	861 785	0	0	1 123 593	86 544		
			(1) Borrow area A									
			(2) Borrow area B									
		ls	(3) Borrow area C									
		i19:	(4) Quarry 1 (Left flank)	C	20.000	600 000	600 000	140.000	2 600 000			
		tem	(5) Quarry II (Plunge pool)									
		əlo	(6) Ouarry III (Soillway approach)									
		Jeli	(7) Ouarv IV (Tunnel inlet)	c	7 000	110.000	13 500	c	C			
		₽NĄ	(8) Evcavation: Main wall	c	331 235	566 305	0	170 960				
		1				00.000		00001	o c			
			(9) EXCAVATION: SAGGIE WAII	>	0	C/F 2F	D	n	0			
			(10) Other							86 544		
			TOTAL AVAILABLE	0	358 235	1 369 280	613 500	310 960	2 600 000	86 544		
			Material needed	0	21 400	507 495	613500	310 960	1 476 407			
			To be stockpiled for later use									
			To be dumped	0	21400	112 532	226404	310.960				
			Damformina	0	336,835	861 785	0		1 123 593	86 544		
			Intouched	0		294 463	387.096	U	1 476 407			
			Darconter contractor	,	207	1001	Mat vov	Alat word	/0FCF	/00		
			Percentage remaining [%]		6%	59%	Not usea	Not used	131%	0%		

P WMA 11/U10/00/3312/3/1/5 - Engineering feasibility design report: Supporting document 5: Dam type selection report

Table F.2: Option	ו 2: Main dam	- Earth core	e rockfill dam	; Saddle	dam -	Zoned
ear	thfill embankn	nent dam b	alancing spr	eadsheet		

				MAIN & SA	ADDLE DAM WALLS +	DIVERSION TUNNE	LS						
					A	8	C	D	Е	u.	U		
					Overhurden for	Clavev sand	Completely and	Unweathered to	Highly and	Slightly weathered			
No.				Material	soil: Organic	transported	highly weathered	moderately	moderately	and unweathered	Imported sand	SUM	Total cost
Ő	am type	Configuration		(source)	topsoil	surface material	shales	weathered shales	weathered dolerite	dolerite			
					Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	
					(m³)	(m ³)	(m³)	(m³)	(m³)	(m³)	(m ³)	(m ³)	
			(1) Required material -	Main wall									
				(a) Core (impervious earthfill)		913 538						913 538	
				(b) Upstream and downstream shells (semi pervious earthfill)								0	
				(c) Rockfill (Impervious layer)						3 732 161		3 732 161	
				(d) Rip-rap								0	
				(e) Gravel layer						91735		91 735	
	4			(f) Sand layer transition zone							91 735	91 735	
]		(g) Blanket and chimney drains								0	
				(h) Concrete								0	
			(2) Required material -	Saddle wall									
				(a) Core (impervious earthfill)		336 835						336 835	
				(b) Upstream and downstream shells (semi pervious earthfill)			861785					861 785	
				(c) Rockfill (Impervious layer)								0	
				(d) Rip-rap						19876		19 876	
				(e) Gravel layer						39 752		39 752	
				(f) Sand layer transition zone							19 876	19 876	
				(g) Blanket and chimney drains							69 99	66 669	
				(h) Concrete aggregate								0	
(1) E	Earth core		(3) Required material -	Diversion tunnels									
001	kfill dam			(a) Diversion works concrete aggregate						2 000		2 000	
	8			(b) Intake structure concrete aggregate						9 000		6 000	
د (2) Zoned			(c) Spillway and chute concrete aggregate						20 000		20 000	2 339 438 UI3
embar	hkment dam			(d) Outlet works concrete aggrgate						1 300		1 300	
e)	varthfill)			(e) Apron slab								0	
				TOTAL REQUIRED	0	1 250 373	861785	0	0	3 912 823	178 279		
				(1) Borrow area A	120 000	800 000	0	0	50 000	0			
				(2) Borrow area B									
			leiı	(3) Borrow area C									
			ete	(4) Quarry I (Left flank)	0	20 000	600 000	600 000	140 000	2 600 000			
			2W 5	(5) Quarry II (Plunge pool)	0	200 000	170 000	44 000	850 000	720 000			
			əldı	(6) Quarry III (Spillway approach)	0	25 000	20 000	10 000	815 000	123 000			
			elie	(7) Quarry IV (Tunnel inlet)	0	7 000	110 000	13 500	0	0			
			νA	(8) Excavation: Main wall	0	820 852	0	0	404 300	0		1 225 153	
				(9) Excavation: Saddle wall	0	0	92 975	0	0	0			
				(10) Other (Imported)						469 823	178 279		
				TOTAL AVAILABLE	120 000	1 872 852	992 975	667 500	2 259 300	3 912 823	178 279		
				Material needed	120 000	622 479	131 190	667 500	2 259 300	0			
				To be stockpiled for later use									
				To be dumped	25 806		131 190	667 500	2 209 300				
				Dam forming		1 250 373	861 785		0	3 912 823	178 279		
				Untouched	94 194	622 479			50 000				
				Percentage remaining (%)	Not used	50%	15%	Not used	Not used	0%	0%		

Table F.3: Option 3: Main dam - Concrete faced rockfill dam; Saddle dan	ו - Zoned
earthfill embankment dam balancing spreadsheet	

				MAIN & SA	ADDLE DAM WALLS	+ DIVERSION TUNN	ELS						
					A	8	υ	٥	ω	u.	9		
					•				Highly and				
S No				A destancial	Overburgen for	Ulayey sand	Lompletely and highly woothorod	Unweathered to	moderately	Slightly weathered	Imported cand	CLINA	Tatal asst
N0.	Dam type	Configuration		(course)	soli: Urganic topsoil	transporteu surfaco material	mgmy weamered	mouerately woathored chalor	weathered	anu unweatnereu dolorito	IIIIbortea squa	MIDC	I OTAI COST /7AB)
				(source)	Inchas		2110102		dolerite				(111-7)
					Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	
					(m³)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	
			(1) Required material - I	Main wall									
				(a) Core (impervious earthfill)								0	
				(b) Upstream and downstream shells (semi pervious earthfill)								0	
				(c) Rockfill (Impervious layer)						3 586 837		3 586 837	
				(d) Rip-rap								0	
				(e) Gravel layer						328 738		328 738	
		111		(f) Sand layer transition zone								0	
				(d) Blanket and chimney drains								0	
				(h) Concrete						22676		22 676	
			(2) Required material - 5	Saddle wall									
				(a) Core (impervions earthfill)		336 835						336835	
				(b) Upstream and downstream shells (semi pervious earthfill)			861 785					861785	
				(c) Rockfill (Impervious laver)								0	
				(d) Rip-rap						19876		19 876	
				(e) Gravel laver						39 752		39 752	
				(f) Sand laver transition zone							19 876	19 876	
				(g) Blanket and chimney drains							66 669	66 669	
				(h) Concrete andreasta								-	
												5	
	 Concrete faced 		(3) Kequired material - (uiversion tunnels									
	rockfill dam			(a) Diversion works concrete aggregate						2 000		2 000	
	ø			 (b) Intake structure concrete aggregate 						6 000		6 000	
m	(3) Zonod			(c) Spillway and chute concrete aggregate						20 000		20 000	2 694 842 852
	(z) zuiteu			(d) Outlet works concrete aggragate						1 300		1 300	
<u>پ</u>	moankment dam			(e) Apron slab						_		0	
	(minine)			TOTAL REQUIRED	0	336 835	861 785	0	0	4 027 180	86 544		
				(1) Borrow area A									
				(2) Borrow area B									
			lei	(3) Borrow area C									
			ıəte	(4) Quarry I (Left flank)	0	20 000	600 000	600 000	140 000	2 600 000			
			2W -	(5) Quarry II (Plunge pool)	0	200 000	170 000	44 000	850 000	720 000			
			əldı	(6) Quarry III (Spillway approach)	0	25 000	20 000	10 000	815 000	123 000			
			slie	(7) Quarry IV (Tunnel inlet)	0	7 000	110 000	13 500	0	0			
			٧A	(8) Excavation: Main wall	0	656 551	0	0	323 376	0		979927	
				(9) Excavation: Saddle wall	0	0	92 975	0	0	0			
				(10) Other (Imported material)						584 180	86 544		
				TOTAL AVAILABLE	0	908 551	992 975	667 500	2 128 376	4 027 180	86 544		
				Material needed	0	571 716	131190	667 500	2 128 376	0			
				To be stockpiled for later use									
				To be dumped		571 716	131190	667 500	2 1 2 8 3 7 6				
				Dam forming		336,835	861785			4 027 180	86 544		
				Untouched									
_					0	0	0	0	0	0			
				Percentage remaining (%)		170%	15%	Not used	Not used	%0	%0		

Table F.4: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam -Zoned earthfill embankment dam balancing spreadsheet

Material
d material - Main wall
(a) Core (impervious earthfill)
(b) Upstream and downstream shells (semi pervio
(c) Rockfill (Impervious layer)
(d) Rip-rap
(e) Gravel layer
(f) Sand layer transition zone
(g) Blanket and chimney drains
(h) Concrete
d material - Saddle wall
(a) Core (impervions earthfill)
(b) Upstream and downstream shells (semi pervious
(c) Rockfill (Impervious layer)
(d) Rip-rap
(e) Gravel layer
(f) Sand layer transition zone
(g) Blanket and chimney drains
(h) Concrete aggregate
d material - Diversion tunnels
(a) Diversion works concrete aggregate
(b) Intake structure concrete aggregate
(c) Spillway and chute concrete aggregate
(d) Outlet works concrete aggregate
(e) Apron slab
TOTAL REQUIRED
(1) Borrow area A
(2) Borrow area B
. 편 (3) Borrow area C
. 로 (4) Quarry I (Left flank)
Ë (5) Quarry II (Plunge pool)
. 프 (6) Quarry III (Spillway approach)
i 🛱 (7) Quarry IV (Tunnel inlet)
🗟 (8) Excavation: Main wall
[9] Excavation: Saddle wall
(10) Other
TOTAL AVAILABLE
To he stor
00 DE 201

Table F.5: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam -Earth core rockfill dam balancing spreadsheet

Table F.6: Option 6: Main dam - Composite o	lam (RCC and zoned ECRD); Saddle
dam - Zoned earthfill embankr	nent dam balancing spreadsheet

		Total cost (ZAR)																					010 000 110 0	CTC 0C7 THC 7																			
		SUM	Volume ریبر ^ع ا		432 541	0	2 340 148	0	25 224	U E0.447	598 283		336 835	861 785	0	19 876	39 752	19 876	66 669	0		2 000	6 000	0	1 300	3 700																	
	9	Imported sand	Volume ریس ^ع ا	1						E0.477	304447							19876	66 669								136 992									136 992	136 992				136 992		%0
	Ŀ	Slightly weathered and unweathered dolerite	Volume / ³ /	1 111			1 923 797		25 224		598 283					19 876	39 752					2 000	000 9		1 300	3 700	2 619 932	0			2 600 000		0	0	0	19 932	2 619 932	0			2 619 932	0	%0
	Е	Highly and moderately weathered dolerite	Volume ر _ش ئ	/ 111/																							0	50 000			140 000		0	352 287	0		542 287	542 287		491 772	0	50 515	Not used
	D	Unweathered to moderately weathered shales	Volume ریب ^ع ار	1 111			416 351																				416 351	0			600 000		13 500	0	0		613 500	197 149		197 149	416351		47%
ELS	C	Completely and highly weathered shales	Volume ر _{ین گا}	1 111										861 785													861 785	0			600 000		110 000	62 908	92 975		865 883	4 098			861 785	4 098	%0
+ DIVERSION TUNN	В	Clayey sand transported surface material	Volume ریب ^ع ر	1 111	432 541								336 835														769 376	800 000			20 000		2 000	780 065	0		1 607 065	837688			769376	837688	109%
ADDLE DAM WALLS	A	Overburden for soil: Organic topsoil	Volume ریب ^ع ر	1 III)																							0	120 000		,	0		0	0	0		120 000	120 000		20 400	0	009 66	Not used
MAIN & S		Material (source)		ial - Main wall	(a) Core (impervious earthfill)	(b) Upstream and downstream shells (semi pervious earthfill)	(c) Rockfill (Impervious layer)	(d) Rip-rap	(e) Gravel layer	(r) Sand layer transition zone (c) Blonket and chimney drains	(b) Concrete	ial - Saddle wall	(a) Core (impervious earthfill)	(b) Upstream and downstream shells (semi pervious earthfill)	(c) Rockfill (Impervious layer)	(d) Rip-rap	(e) Gravel layer	(f) Sand layer transition zone	(g) Blanket and chimney drains	(h) Concrete aggregate	ial - Diversion tunnels	(a) Diversion works concrete aggregate	(b) Intake structure concrete aggregate	(c) Spillway and chute concrete aggregate	(d) Outlet works concrete aggregate	(e) Apron slab	TOTAL REQUIRED	(1) Borrow area A	(2) Borrow area B	(3) Borrow area C	(4) Quarry I (Lett flank)	(5) Quarry III (Plurige pool) (6) Quarry III (Soillway anoroach)	(2) Querry In (3pinwey approach) (7) Quarry IV (Tunnel inlet)	(8) Excavation: Main wall	(9) Excavation: Saddle wall	(10) Other	TOTAL AVAILABLE	Material needed	To be stockniled for later use	To be dumped	Dam forming	Untouched	Percentade remaining (%)
				(1) Required mater								(2) Required mater									(3) Required mater									ri9	əter	n əl	deli	svA									
		Configuration		[[]																															
		Dam type									4							1			(1) Composito	(T) Composite	Dam (KUU & ZONEG	echul + (z) zureu	emplement uam																		
		No.																					Ģ	>																			

Table F.7: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1);Saddle dam - Zoned earthfill embankment dam balancingspreadsheet

۲				MAIN & SP	ADDLE DAM WALLS	+ DIVERSION TUNNE	ELS 215						
					A	В	c	D	Е	4	9		
									Highly and				
				:	Overburden for	Clayey sand	Completely and	Unweathered to	moderately	Slightly weathered			
ö	Dave trues	Configuration		Material	soil: Organic	transported	highly weathered	moderately	woathorod	and unweathered	Imported sand	SUM	Total cost
	uam type	configuration		(source)	topsoil	surface material	shales	weathered shales	dolerite	dolerite			(ZAR)
					Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	
					(m ³)	(m ³)	(m ³)						
F			(1) Required material - N	Vlain wall									
				(a) Core (impervious earthfill)								-	
				(b) Thestream and downstream shells (semi nerviculs earthfill)									
				 (b) Opsucant and downsuicant shores (serin pervices cartiling) (c) Dodyfill (Importions local) 					1 400 041	AC1 0A0 C		271 3CC N	
				(c) Nockilli (iiiipervidus iayer) (d) Rin-rab					1 400 UH2	HCT 040 7		0/7 000 +	
				(a) Apriap						101 100		201100	
				(e) Gravel layer						591 I 66		391 199	
				(f) Sand layer transition zone								0	
				(g) Blanket and chimney drains								0	
				(h) Concrete						23 339		23 339	
			(2) Required material - S	saddle wall									
				(a) Core (impervious earthfill)		336 835						336 835	
				(b) Upstream and downstream shells (semi pervious earthfill)			861 785					861785	
				(c) Rockfill (Impervious laver)								0	
]		(d) Rip-rap						19 876		19 876	
				i(e) Gravel laver						39 752		39 752	
				(f) Sand laver transition zone							19876	19 876	
				(d) Blanket and chimnev drains							66669	66 669	
				(h) Concrete aggregate							0	0	
	(1) Zoned		(3) Romired material - C	(ii) Source aggregate								,	
	concrete faced		n - International - Internation	Version tunnels						000 0		1000	
	rockfill dam -			a) Diversion works concrete aggregate						7 000		2 000	
7	Option 1 +			(b) Intake structure concrete aggregate						6 000		6 000	2 230 950 484
	(2)Zoned			(c) Spillway and chute concrete aggregate						20 000		20 000	
9	mbankment dam			(d) Outlet works concrete aggregate						1 300		1300	
-	(aarthfill)			(e) Apron slab								0	
	(TOTAL REQUIRED	0	336 835	861 785	0	1 488 042	3 351 600	86544		
				(1) Borrow area A									
				(2) Borrow area B									
			lsir	(3) Borrow area C									
			ete	(4) Quarry I (Left flank)	0	20 000	600 000	600 000	140 000	2 600 000			
			2W 3	(5) Quarry II (Plunge pool)	0	200 000	170 000	44 000	850 000	720 000			
			əldı	(6) Quarry III (Spillway approach)	0	25 000	20 000	10 000	815 000	123 000			
			elie	(7) Quarry IV (Tunnel inlet)	0	2 000	110 000	13 500	0	0			
			vA	(8) Excavation: Main wall	0	794 932	0	0	391 533	0			
				(9) Excavation: Saddle wall	0	0	92 975	0	0	0			
				(10) Other							86544		
				TOTAL AVAILABLE	0	1 046 932	992 975	667 500	2 196 533	3 443 000	86544		
				Material needed $(+) = Surplus; - = Deficit)$	0	710 097	131 190	667500	708 492	91 400			
				To be stockpiled for later use									
				To be dumped	0	200012	131 190	667500	708 492				
				Dam forming	0	336835	861 785	0	1 488 042	3 351 600	86544		
				Untouched	0					91 400			
				Percentage remaining (%)		211%	15%	Not used	48%	3%	%0		
1													

Table F.8: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2);Saddle dam - Zoned earthfill embankment dam balancingspreadsheet

		Total cost (ZAR)																						002 030 617 6	00/ 000 7T+ 7																				
		WNS	Volume (m ³)		-	4 078 337	0	0	391 199	0	0	33 341		336 835	861 785	0	19 876	39 752	19 876	66 669	0		2 000	6 000	20 000	1 300	0																		
l	9	Imported sand	Volume (m ³)	<i>f</i> /															19876	699 99								86544										86544	86 544				86544		%0
l	4	Slightly weathered and unweathered dolerite	Volume /m ³ 1	11		3 479 971			391 199			33 341					19 876	39 752					2 000	0009	20 000	1 300		3 993 439				2 600 000	720 000	123 000	0	0	0	550 439	3 993 439	0			3 993 439		0%
l	ш	Highly and moderately weathered dolerite	Volume (m ³)	<i>(</i>)																								0				140 000	850 000	815 000	0	382 247	0		2 187 247	2 187 247		2 187 247	0		Not used
l	٥	Unweathered to moderately weathered shales	Volume (m ³)			598 366																						598 366				600 000	44 000	10 000	13 500	0	0		667 500	69134		69 134	598 366		12%
ELS	c	Completely and highly weathered shales	Volume (m ³)	<i>f</i> /											861785													861 785				600 000	170 000	20 000	110 000	0	92 975		526 266	131 190		131190	861 785		15%
+ DIVERSION TUNN	8	Clayey sand transported surface material	Volume /m ³ 1	11										336 835														336 835				20 000	200 000	25 000	7 000	753 252	0		1 005 252	668 417		668 417	336 835		198%
IDDLE DAM WALLS	۲	Overburden for soil: Organic topsoil	Volume /m ³ 1	11																								0				0	0	0	0	0	0		0	0			0		
MAIN & S		Material (source)		ain wall	(a) Core (immeniate earthfill)	 (b) Upstream and downstream shells (semi pervious earthfill) 	(c) Rockfill (Impervious layer)	(d) Rip-rap	(e) Gravel layer	(f) Sand layer transition zone	(g) Blanket and chimney drains	(h) Concrete	addle wall	(a) Core (impervious earthfill)	(b) Upstream and downstream shells (semi pervious earthfill)	(c) Rockfill (Impervious layer)	(d) Rip-rap	(e) Gravel layer	(f) Sand layer transition zone	(g) Blanket and chimney drains	(h) Concrete aggregate	iversion tunnels	(a) Diversion works concrete aggregate	(b) Intake structure concrete aggregate	(c) Spillway and chute concrete aggregate	(d) Outlet works concrete aggregate	(e) Apron slab	TOTAL REQUIRED	(1) Borrow area A	(2) Borrow area B	(3) Borrow area C	(4) Quarry I (Left flank)	(5) Quarry II (Plunge pool)	(6) Quarry III (Spillway approach)	(7) Quarry IV (Tunnel inlet)	(8) Excavation: Main wall	(9) Excavation: Saddle wall	(10) Other	TOTAL AVAILABLE	Material needed	To be stockpiled for later use	To be dumped	Dam forming	Untouched	Percentage remaining (%)
				(1) Required material - N									(2) Required material - Si									(3) Required material - D									lei1:	əte	ພ ສ	olde	lie	vA									
		Configuration			_				_	_	_	_	_	_	_					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	
		Dam type																			(1) Zonod	(T) 20ned	concrete taced	rockilli udin - ontion 2 ±	(2) Zoned	(z) zureu	embankment uam																		
		No. Dam type Configuration		(1) Required m									(2) Required m:								(1) Zonod	(1) Coned (3) Required m	concrete faced	POCKIIII uditi -	(2) Zonod						16178	əte	w a	alde	lis	vA									
Appendix G

Smithfield Dam: Results from

balancing exercise – Bill of

quantities

P WMA 11/U10/00/3312/3/1/5 – Engineering feasibility design report: Supporting document 5: Dam type selection report

Table G.1: Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam - zoned earthfill embankment dam – Bill of quantities

						AMOUNT
No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	19.9	R 462 277.19
	0212	Clear and grub large trees				
	0.0.1.2	a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8316	Clearing of basin	ha			R 0.00
	0.0.1.0		na			10.00
0 2 2	0.0.0	Remove topsoil to nominal depth 150 mm	m ³	20.00	100.020	D 2 076 577 07
0.3.2	0.3.2			20.00	196 629	K 3 9/0 5/7.9/
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment				
		(i) Removal to designated spoil dumps	2			
		in the dam basin, spreading and trimming	m°	31.60	671 296	R 21 212 954.54
		b) Material suitable for embankment from	3			
		essential excavations for (Stockpiled): c) Extra over items (b) (1) - (4) for excavation in:	m.	30.30	2 322 213	R 70 363 049.94
		1) Intermediate material	m ³	INCL		
		2) Hard rock material	m ³	36.50	1 660 957	R 60 624 928.28
		Importing material	m ³	200.00		R 0.00
		b) River Sand	m ³	290.00	86 544	R 25 097 760.00
8.3.2	8.3.5	Forming embankment from stockpiled material 8.33b	3			
		(a) Core (impervious earthfill)	m ³	48.37	336 835	R 16 292 715.54
		(c) Rockfill (Impervious laver)	m ³	48.37	01785	R 41 004 331.92
		(d) Rip-rap	m ³	438.52	19 876	R 8 716 008.48
		(e) Gravel layer	m ³	97.94	39 752	R 3 893 304.16
		(f) Sand layer transition zone	m ³	97.94	19 876	R 1 946 652.08
		(g) Blanket and chimney drains	m ³	789.45	66 669	R 52 631 460.52
		(h) IVRCC	m ³ 3	45.40	120 634	R 5 476 766.85
		(h) RCC concrete	m ³	1 156.71	1 498 979	R 1 733 883 523.84
				1 901.05	13 000	R 25 704 050.00
8.3.3		Formwork	²	(75.00	100.001	
		(a) Gang formed (b) Intricate	m ²	475.00	120 634	R 57 300 974.78
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.4	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³			R 0.00
		b) Extra over for:				
I		1) Intermediate excavation	m ³			R 0.00
I		2) Hard rock excavation	m³			R 0.00
		3) Boulder excavation, Class A	m ³			R 0.00
		4) Boulder excavation, Class B	m°			R 0.00
1						
		SUB-TOTAL				R 2 129 327 536

Table G.2: Option 1: Main dam - Roller compacted concrete (RCC) gravity; Saddle dam - zoned earthfill embankment dam – Cost breakdown

Item	L	Jnit	Rate	Cost
DIRECT COSTS				
Dam forming and excavation	S	ium		2 129 327 536.08
Diversion works	S	ium		83 635 941.00
Intake and outlet works	S	ium		104 197 998.73
Spillway and chute	S	ium		
Measurng weirs	S	ium		
SUB	TOTAL (ACTIVITIES)			R 2 317 161 475.81
Landscaping	9	6 Direct Costs	5	R 115 858 073.79
Miscellaneous	9	6 Direct Costs	10	R 231 716 147.58
				D 2 664 725 607 19
SUB TOTAL A			1	K 2 004 / 33 09/.10
Proliminary and General		/ of Sub total A	30	P 700 / 20 700 15
	ľ		30	n / 33 420 / 03.13
Infrastructure				
Road deviations	F	R/km		R 0.00
Housing and accomodation	L	ump sum		0
Access roads	F	R/km		R 0.00
Pipeline	F	R/km		0
Water to site- Construction	L	ump sum		0
Electricty Supply and deviation	L	ump sum		0
Social (Relocation)	L	ump sum		0
Environmental	L	ump sum		0
SUB TOTAL B				R 3 464 156 406.33
Contingencies	9	6 of sub total B	10	R 346 415 640.63
SUB TOTAL C				R 3 810 572 046.96
Planning design and supervision	9	6 of sub total C	15	R 571 585 807.04
SUB TOTAL D				R 4 382 157 854.01
VAT	9	6 of sub total D	0	R 0.00
				R 4 382 157 854
Social (Relocation)				0
Environmental				0
Total Project Cost	•			R 4 382 157 854

Table G.3: Option 2: Main dam - Earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam - Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	29.0	R 673 361.66
	8.3.1.2	Clear and grub large trees				
		a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
8.3.2	8.3.2	Remove topsoil to nominal depth 150 mm (or other stated depth), stockpile and maintain	m³	20.00	289 618	R 5 792 358.36
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment				
		(i) Removal to designated spoil dumps	3		0.000 700	D 05 007 000 10
		in the dam basin, spreading and trimming	m.	31.60	3 033 796	R 95 867 968.48
		essential excavations for (Stockpiled):	m³	30.30	6 024 982	
		c) Extra over items (b) (1) - (4) for excavation in:				
		1) Intermediate material	m³	INCL		
		2) Hard rock material	m³	36.50	3 912 823	R 142 818 052.02
		Importing material				
		a) Dolerite	m ³	300.00	469 823	R 140 946 900.00
		b) River Sand	m	290.00	178 279	R 51 700 910.00
8.3.2	8.3.5	Forming embankment	3			
		(a) Core (impervious earthfill)	m ³	48.37	1 250 373	R 60 480 558.47
		(b) Upstream and downstream shells (semi pervious earthfill)	m ³	48.37	861 785	R 41 684 531.92
		(c) Rockfill (Impervious layer)	m ³	438.52	3 7 32 161	R 242 590 448.37 R 8 716 008 48
		(e) Gravel laver	m ³	97.94	13 070	R 12 877 800 84
		(f) Sand laver transition zone	m ³	97.94	111 611	R 10 931 148.76
		(q) Blanket and chimney drains	m ³	789.45	66 668.5	R 52 631 460.52
		(h) RCC	m ³	1 156.71	0	R 0.00
		(i) IVRCC	m ³	45.40		R 0.00
		(j) Structural	m³	1 981.85	29 300	R 58 068 205.00
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:	2			
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m°	36.50		R 0.00
		3) Boulder excavation, Class A	m ³			R 0.00
		4) DOUIDER EXCAVATION, CLASS B	111			к 0.00
		SUBTOTAL				D 035 770 749
		SUB-IVIAL		l		к 925 / /9 /13

Table G.4: Option 2: Main dam - Earth core rockfill dam; Saddle dam - Zoned earthfill embankment dam – Cost breakdown

Item	Unit	Rate	Cost
DIRECT COSTS			
Dam forming and excavation	Sum		925 779 712.88
Diversion works	Sum		83 635 941.00
Intake and outlet works	Sum		105 697 998.73
Spillway and chute	Sum		121 915 185.33
Measurng weirs	Sum		
SUB TOT	TAL (ACTIVITIES)		R 1 237 028 837.94
Landscaping	% Direct Cos	ts 5	R 61 851 441.90
Miscellaneous	% Direct Cos	ts 10	R 123 702 883.79
SUB TOTAL A			R 1 422 583 163.63
Preliminery and General	% of Sub to	al A 30	R 426 774 949.09
Infrastructure			
Road deviations	R/km		R 0.00
Housing and accomodation	Lump sum		0
Access roads	R/km		R 0.00
Pipeline	R/km		0
Water to site- Construction	Lump sum		0
Electricty Supply and deviation	Lump sum		0
Social (Relocation)	Lump sum		0
Environmental	Lump sum		0
SUB TOTAL B			R 1 849 358 112.72
Contingencies	% of sub tot	al B 10	R 184 935 811.27
SUB TOTAL C			R 2 034 293 923.99
Planning design and supervision	% of sub tot	al C 15	R 305 144 088.60
SUB TOTAL D			R 2 339 438 012.59
VAT	% of sub tot	al D O	R 0.00
NETT PROJECT COST			R 2 339 438 013
Social (Relocation)			0
Environmental			0
Total Project Cost			R 2 339 438 013

Table G.5: Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zoned earthfill embankment dam – Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	27.2	R 631 978.83
	8312	Clear and grub large trees				
	0.0.112	a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8316	Clearing of basin	ha			
	0.0.110		, ind			
8.3.2	8.3.2	Remove topsoil to nominal depth 150 mm (or other stated depth), stockpile and maintain	m ³	20.00	271 819	R 5 436 377.03
8.3.3	8.3.3	Excavation				
		(i) Removal to designated spoil dumps				
		in the dam basin, spreading and trimming	m ³	31.60	3 033 796	R 95 867 968.48
		b) Material suitable for embankment from	m ³	20.20	6 024 082	B 182 556 020 66
		c) Extra over items (b) (1) - (4) for excavation in:		30.30	0 024 982	K 162 550 959.00
		1) Intermediate material	m ³	INCL		
		2) Hard rock material	m ³	36.50	3 912 823	R 142 818 052.02
		Importing material				
		a) Dolerite	m³	300.00	584 180	R 175 254 000.00
		b) River Sand	m ³	290.00	86 544	R 25 097 760.00
8.3.2	8.3.5	Forming embankment				
		(a) Core (impervious earthfill)	m ³	48.37	336 835	R 16 292 715.54
		(b) Upstream and downstream shells (semi pervious earthfill)	m³	48.37	861 785	R 41 684 531.92
		(c) Rockfill (Impervious layer)	m³	65.00	3 586 837	R 233 144 434.20
		(d) Rip-rap	m³	438.52	19 876	R 8 716 008.48
		(e) Gravel layer	m ³	97.94	368 490	R 36 089 951.10
		(f) Sand layer transition zone	m ³	97.94	19 876	R 1 946 652.08
		(g) Blanket and chimney drains	m³	789.45	66 669	R 52 631 460.52
		(h) RCC	m³	1 156.71	32 394	R 37 470 732.91
		(i) IVRCC	m°	45.40		R 0.00
		(j) Structural	m	1 981.85	29 300	R 58 068 205.00
		SABS 1200 D-1988 D: Earthworks Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:	1			
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m ³	36.50		R 0.00
		3) Boulder excavation, Class A	m³			R 0.00
		4) Boulder excavation, Class B	m³			R 0.00
		SUB-TOTAL				R 1 113 707 768

Table G.6: Option 3: Main dam - Concrete faced rockfill dam; Saddle dam - Zonedearthfill embankment dam - Cost breakdown

Item	l	Jnit	Rate	Cost
DIRECT COSTS				
Dam forming and excavation	5	Sum		1 113 707 767.77
Diversion works	9	Sum		83 635 941.00
Intake and outlet works	9	Sum		105 697 998.73
Spillway and chute	9	Sum		121 915 185.33
Measurng weirs		Sum		
SUB TOTAL (AC	TIVITIES)			R 1 424 956 892.83
Landscaping	9	6 Direct Costs	5	R 71 247 844.64
Miscellaneous	9	6 Direct Costs	10	R 142 495 689.28
				R 1 638 700 426 75
				1 1 0 30 7 00 420.73
Preliminery and General	9	6 of Sub total A	30	R 491 610 128.03
	ľ			
Infrastructure				
Road deviations	F	R/km		R 0.00
Housing and accomodation	L	.ump sum		0
Access roads	F	R/km		R 0.00
Pipeline	F	R/km		0
Water to site- Construction	L	.ump sum		0
Electricty Supply and deviation	L	ump sum		0
Social (Relocation)	L	ump sum		0
Environmental	L	ump sum		0
				D 2 120 210 FE4 79
Sobiotab	0	(of cub total D	10	R 2 130 310 334.78
contingencies	7		10	K 215 051 055.46
SUB TOTAL C				R 2 343 341 610.25
Planning design and supervision	9	% of sub total C	15	R 351 501 241.54
SUB TOTAL D				R 2 694 842 851.79
VAT	0/	% of sub total D	0	R 0.00
NETT PROJECT COST				R 2 694 842 852
	+			
	+ +			0
	+			0
Total Project Cost				R 2 694 842 852
				11 2 054 042 052

Table G.7: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zonedearthfill embankment dam – Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	29.5	R 686 067.60
	8.3.1.2	Clear and grub large trees				
		a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
			NO			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
0 2 2	000	Remove topsoil to nominal depth 150 mm (or other stated depth) stocknile and maintain	m ³	20.00	205.092	P 5 001 656 76
0.3.2	0.3.2			20.00	295 065	K 5 901 050.70
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment (i) Removal to designated spoil dumps				
		in the dam basin, spreading and trimming	m³	31.60	2 474 259	R 78 186 584.43
		b) Material suitable for embankment from essential excavations for (Stockniled):	m ³	20.20	6 067 FFF	
		c) Extra over items (b) (1) - (4) for excavation in:		30.30	0 007 555	
		1) Intermediate material	m ³	INCL		
		2) Hard rock material	m³	36.50	3 364 209	R 122 793 630.59
		Importing material				
		a) Dolerite	m ³	300.00		
		b) River Sand	m³	290.00		
8.3.2	8.3.5	Forming embankment				
		(a) Core (impervious earthfill)	m³	48.37	1 259 626	R 60 928 103.67
		(b) Upstream and downstream shells (semi pervious earthfill)	m³ 3	48.37	861 785	R 41 684 531.92
		(c) Rockfill (Impervious layer)	m ⁻	65.00	3 810 316	R 247 670 521.87
		(d) Rip-rap (e) Gravel laver	m ³	438.52	19 876	R 8 716 008.48 R 8 486 734 32
		(f) Sand laver transition zone	m ³	97.94	19 876	R 1 946 652.08
		(g) Blanket and chimney drains	m³	789.45	160 469	R 126 682 582.32
		(h) RCC	m ³	1 156.71	0	R 0.00
		(i) IVRCC	m ²	45.40		R 0.00
		(j) Structural concrete	m°	1 981.85	29 300	R 58 068 205.00
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:				
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m³	36.50		R 0.00
		3) Boulder excavation, Class A	m³			R 0.00
		4) Boulder excavation, Class B	m³			R 0.00
		SUB-TOTAL				R 761 751 279

Table G.8: Option 4: Main dam - Zoned earth core rockfill dam; Saddle dam - Zonedearthfill embankment dam - Cost breakdown

Item		Unit	Rate	Cost
DIRECT COSTS			1	
Dam forming and excavation	1	Sum		761 751 279.03
Diversion works		Sum		83 635 941.00
Intake and outlet works		Sum		105 697 998.73
Spillway and chute		Sum		121 915 185.33
Measurng weirs		Sum		
SUB TOTAL (ACT	TIVITIES)			R 1 073 000 404.08
Landscaping		% Direct Costs	5	R 53 650 020.20
Miscellaneous	ļ	% Direct Costs	10	R 107 300 040.41
				R 1 233 950 /6/ 70
	1			IX 1 233 330 404.70
Preliminery and General	1	% of Sub total A	30	R 370 185 139.41
	1			
Infrastructure				
Road deviations		R/km		R 0.00
Housing and accomodation		Lump sum		0
Access roads		R/km		R 0.00
Pipeline		R/km		0
Water to site- Construction		Lump sum		0
Electricty Supply and deviation		Lump sum		0
Social (Relocation)		Lump sum		0
Environmental		Lump sum		0
SUB TOTAL B				R 1 604 135 604.11
Contingencies		% of sub total B	10	R 160 413 560.41
SUB TOTAL C				R 1 764 549 164.52
Planning design and supervision		% of sub total C	15	R 264 682 374.68
SUB TOTAL D				R 2 029 231 539.19
VAT		% of sub total D	0	R 0.00
NETT PROJECT COST		<u> </u>		R 2 029 231 539
	T	I	Т	
Social (Relocation)	1			0
Environmental	1		1	0
	1			
Total Project Cost			-	R 2 029 231 539

Table G.9: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam - Earthcore rockfill dam - Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	26.2	R 609 845.38
	8.3.1.2	Clear and grub large trees				
		a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
		Remove topsoil to nominal depth 150 mm	3			
8.3.2	8.3.2	(or other stated depth), stockpile and maintain	m.	20.00	262 299	R 5 245 981.78
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment				
		(i) Removal to designated spoil dumps in the dam basin, spreading and trimming	m³	31.60	3 243 450	R 102 493 030.74
		b) Material suitable for embankment from	2			
		essential excavations for (Stockpiled):	m°	30.30	5 675 219	
		 c) Extra over items (b) (1) - (4) for excavation in: 1) Intermediate material 	m ³	Incl		
		2) Hard rock material	m ³	36.50	3 887 288	R 141 886 021.13
		Importing material	m ³	300.00	444 288	P 133 286 400 00
		b) River Sand	m ³	290.00	197 319	R 57 222 550.81
		- · · · ·				
8.3.2	8.3.5	Forming embankment	m ³	48.37	1 128 614	R 54 591 052 19
		(b) Upstream and downstream shells (semi pervious earthfill)	m³	48.37	0	R 0.00
		(c) Rockfill (Impervious layer)	m³	65.00	4 517 306	R 293 624 864.15
		(d) Rip-rap	m³	438.52	0	R 0.00
		(e) Gravel layer	m ³	97.94	0	R 0.00
		(f) Sand layer transition zone	m ³	97.94	197 319	R 19 325 436.64
		(g) blanket and chimney drains	m ³	7 69.45 1 156 71	0	R 0.00
		(i) IVRCC	m ²	45.40	5	R 0.00
		(j) Structural concrete	m ³	1 981.85	29 300	R 58 068 205.00
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:				
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m ³	36.50		R 0.00
		3) Boulder excavation, Class A	m ³			R 0.00
		4) Boulder excavation, Class B	m³			R 0.00
		SUB-TOTAL				R 866 353 388

Table G.10: Option 5: Main dam - Zoned earth core rockfill dam; Saddle dam - Earthcore rockfill dam - Cost breakdown

Item		Unit	Rate	Cost
DIRECT COSTS	1			
Dam forming and excavation		Sum		866 353 387.81
Diversion works		Sum		83 635 941.00
Intake and outlet works		Sum		105 697 998.73
Spillway and chute		Sum		121 915 185.33
Measurng weirs		Sum		
SUB TOTAL (ACT	TIVITIES)			R 1 177 602 512.87
Landscaping		% Direct Costs	5	R 58 880 125.64
Miscellaneous		% Direct Costs	10	R 117 760 251.29
				D 1 254 242 890 90
SUB TOTAL A	Т	I	I	K 1 354 242 809.00
Proliminory and General	<u> </u>	% of Sub total A	30	P 406 272 866 94
	<u> </u>		50	N 400 272 600.34
Infrastructure	<u> </u>			
Road deviations	1	R/km		R 0.00
Housing and accomodation		Lump sum		0
Access roads	1	R/km		R 0.00
Pipeline	1	R/km		0
Water to site- Construction	[Lump sum		0
Electricty Supply and deviation		Lump sum		0
Social (Relocation)		Lump sum		0
Environmental		Lump sum		0
SUB TOTAL B	-		•	R 1 760 515 756.74
Contingencies	Ļ	% of sub total B	10	R 176 051 575.67
				D 4 000 507 000 44
SUB TOTAL C		· · · · ·		R 1 936 567 332.41
Planning design and supervision	ļ	% of sub total C	15	R 290 485 099.86
				P 2 227 052 422 27
SOB TOTAL D	 	lat it is to take D	0	κ 2 227 U32 432.27
VAT	<u> </u>	% of sub total D	0	K U.UU
NETT PROJECT COST				R 2 227 052 432
Social (Relocation)				0
Environmental				0
Total Project Cost				R 2 227 052 432

Table G.11: Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam- Zoned earthfill embankment dam – Bill of quantities

				DATE		AMOUNT
No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Empankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00		R 0.00
	0212	Clear and grub large trees				
	0.5.1.2	a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
		Pamova tancail to naminal donth 150 mm				
8.3.2	8.3.2	(or other stated depth), stockpile and maintain	m ³	20.00		R 0.00
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment				
		in the dam basin, spreading and trimming	m ³	31.60	709 321	R 22 414 543.60
		b) Material suitable for embankment from				
		essential excavations for (Stockpiled):	m³	30.30	4 667 444	
		c) Extra over items (b) (1) - (4) for excavation in:	³			
		1) Intermediate material	m ³	Incl	0.010.000	D 05 007 500 40
		2) Hard rock material		36.50	2 619 932	R 95 627 503.49
		Importing material				
		a) Dolerite	m ³	300.00		R 0.00
		b) River Sand	m ³	290.00	136 992	R 39 727 546.01
0.0.4	0.0.5					
8.3.4	8.3.5	(a) Core (impensious earthfill)	m ³	48 37	760 376	P 37 21/ 728 35
		(a) Objective and downstream shells (semi pervious earthfill)	m ³	48.37	861 785	R 41 684 531.92
		(c) Rockfill (Impervious layer)	m ³	65.00	2 340 148	R 152 109 610.94
		(d) Rip-rap	m ³	438.52	19 876	R 8 716 008.48
		(e) Gravel layer	m ³	97.94	64 975	R 6 363 696.47
		(f) Sand layer transition zone	m ³	97.94	19 876	R 1 946 652.08
		(g) Blanket and chimney drains	m ³	789.45	117 116	R 92 456 888.52
		(h) RCC	m°	1 156.71	598 283	R 692 040 224.32
		(i) IVRCC	m² 	45.45	53 716	R 2 441 399.03
		(j) Structural/ CVC		1 981.85	13 000	R 25 764 050.00
8.3.5		Formwork				
		(a) Gang formed	m ²	475.00	53 716	R 25 515 171.35
		(b) Intricate	m ²			
		SABS 1200 D-1988 D: Earthworks Quarry excavation to stocknile or dispose				
		adany excavation to stockpile of dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m ³	31.60		R 0.00
		b) Extra over for:	m ³			
)) Intermediate excavation 2) Hard rock excavation	m ³	5.40		K 0.00
		2) Haru ruck excavation 3) Roulder excavation Class A	m ³	36.50		K 0.00
		4) Boulder excavation, Class B	m ³			R 0.00
		.,				10.00
		SUB-TOTAL				R 1 244 022 555

 Table G.12: Option 6: Main dam - Composite dam (RCC and zoned ECRD); Saddle dam

- Zoned earthfill embankment dam – Cost breakdown

Item	Unit	Rate	Cost
DIRECT COSTS			
Dam forming and excavation	Sum		1 244 022 554.55
Diversion works	Sum		83 635 941.00
Intake and outlet works	Sum		105 697 998.73
Spillway and chute	Sum		121 915 185.33
Measurng weirs	Sum		
SUB TOTAL	(ACTIVITIES)		R 1 555 271 679.61
Landscaping	% Direct Costs	5	R 77 763 583.98
Miscellaneous	% Direct Costs	10	R 155 527 167.96
SUB TOTAL A			R 1 788 562 431.55
Preliminery and General	% of Sub total	A 30	R 536 568 729.47
Pood deviations	P/km		R 0.00
Road deviations			0.00
	B/km		B 0 00
Pineline	B/km		0.00
Water to site- Construction	Lump sum		- 0
Electricity Supply and deviation	Lump sum		0
Social (Relocation)	Lump sum		0
Environmental	Lump sum		0
SUB TOTAL B	· ·	1	R 2 325 131 161.02
Contingencies	% of sub total I	B 10	R 232 513 116.10
-			
SUB TOTAL C			R 2 557 644 277.12
Planning design and supervision	% of sub total (C <u>15</u>	R 383 646 641.57
SUB TOTAL D			R 2 941 290 918.69
VAT	% of sub total I	D 0	R 0.00
NETT PROJECT COST			R 2 941 290 919
Social (Relocation)	_		0
Environmental			0
Total Project Cost			R 2 941 290 919

Table G.13: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddledam - Zoned earthfill embankment dam – Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
0.2.4	0.2.4					
0.3.1	0.3.1 8.3.1.1	Clear and strip site	ha	23 250 00	30.7	R 713 068 99
	0.0.111		114	20 200.00	00.1	
	8.3.1.2	Clear and grub large trees				
		a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
		Remove topsoil to nominal depth 150 mm				
8.3.2	8.3.2	(or other stated depth), stockpile and maintain	m ³	20.00	306 696	R 6 133 926.84
8.3.3	8.3.3	Excavation				
		(i) Removal to designated spoil dumps				
		in the dam basin, spreading and trimming	m ³	31.60	2 217 278	R 70 065 991.21
		 b) Material suitable for embankment from essential excavations for (Stockpiled): 	m ³	30.30	6 038 261	
		c) Extra over items (b) (1) - (4) for excavation in:		00.00	0 000 201	
		1) Intermediate material	m ³	Incl		
		2) Hard rock material	m ³	36.50	4 839 641	R 176 646 912.41
		a) Dolerite	m ³	300.00		R 0.00
		b) River Sand	m³	290.00	86 544	R 25 097 899.90
8.3.4	8.3.5	Forming embankment	3			
		(a) Core (impervious earthfill)	m° 3	48.37	336 835	R 16 292 715.54
		(b) Upstream and downstream shells (semi pervious earthfill)	m ³	48.37	861 785	R 41 684 531.92
		(d) Rin-ran	m ³	438.52	4 330 176	R 201 001 430.00
		(e) Gravel laver	m ³	97.94	430 951	R 42 207 313 21
		(f) Sand layer transition zone	m ³	97.94	19 876	R 1 946 652.08
		(g) Blanket and chimney drains	m ³	789.45	66 669	R 52 631 460.52
		(h) Structural	m ³	1 981.85	52 639	R 104 322 397.63
8.3.5		Formwork	2			
		(a) Gang formed	m m ²	475.00	84 430	R 40 104 258.27
		(b) minicale				
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:				
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m ³	36.50		R 0.00
		3) Boulder excavation, Class A	m ³			R 0.00
		4) Boulder excavation, Class B	m ³			R 0.00
		SUB-TOTAL		1		R 868 414 568
				I		

Table G.14: Option 7: Main dam - Zoned concrete faced rockfill dam (option 1); Saddledam - Zoned earthfill embankment dam - Cost breakdown

Item	Unit	Rate	Cost
DIRECT COSTS			
Dam forming and excavation	Sum		868 414 567.69
Diversion works	Sum		83 635 941.00
Intake and outlet works	Sum		105 697 998.73
Spillway and chute	Sum		121 915 185.33
Measurng weirs	Sum		
SUB TOTAL (A	ACTIVITIES)		R 1 179 663 692.74
Landscaping	% Direct Costs	5	R 58 983 184.64
Miscellaneous	% Direct Costs	10	R 117 966 369.27
SUB TOTAL A			R 1 356 613 246.65
Preliminery and General	% of Sub total	A 30	R 406 983 974.00
Infrastructure			
Road deviations	R/km		R 0.00
Housing and accomodation	Lump sum		0
Access roads	R/km		R 0.00
Pipeline	R/km		0
Water to site- Construction	Lump sum		0
Electricty Supply and deviation	Lump sum		0
Social (Relocation)	Lump sum		0
Environmental	Lump sum		0
SUB TOTAL B			R 1 763 597 220.65
Contingencies	% of sub total	B 10	R 176 359 722.07
SUB TOTAL C			R 1 939 956 942.72
Planning design and supervision	% of sub total	C 15	R 290 993 541.41
SUB TOTAL D			R 2 230 950 484.12
VAT	% of sub total	D 0	R 0.00
NETT PROJECT COST			R 2 230 950 484
Social (Relocation)			0
Environmental			0
Total Project Cost			R 2 230 950 484

Table G.15: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddledam - Zoned earthfill embankment dam – Bill of quantities

No	PAY	DESCRIPTION	UNIT	RATE	QUANTITY	AMOUNT Total
	REF					Rand
		SABS 1200 DE-1984 DE: Small earth dams				
		Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	29.7	R 690 249.61
	8312	Clear and grub large trees				
	0.5.1.2	a) over 1m and up to and including 2 m	No			R 0.00
		b) over 2 m and up to and including 3 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
		Remove topsoil to nominal depth 150 mm				
8.3.2	8.3.2	(or other stated depth), stockpile and maintain	m ³	20.00	296 882	R 5 937 631.03
8.3.3	8.3.3	Excavation				
		a) Material unsuitable for embankment				
		(i) Removal to designated spoil dumps	2			
		In the dam basin, spreading and trimming	m°	31.60	3 055 988	R 96 569 207.53
		essential excavations for (Stockpiled):	m³	30.30	5 790 425	
		c) Extra over items (b) (1) - (4) for excavation in:	3			
		1) Intermediate material	m ⁻	Incl		
		2) Hard rock material	m	36.50	3 993 439	R 145 760 532.42
		Importing material				
		a) Dolerite	m°	300.00	550 439	R 165 131 700.00
		b) River Sand	m°	290.00	86 544	R 25 097 760.00
8.3.4	8.3.5	Forming embankment				
		(a) Core (impervious earthfill)	m ³	48.37	336 835	R 16 292 715.54
		(b) Upstream and downstream shells (semi pervious earthfill)	m°	48.37	4 940 122	R 238 953 706.88
		(c) Rockfill (Impervious layer)	m°	65.00	0	R 0.00
		(d) Rip-rap	m ³	438.52	19 876	R 8 716 008.48
		(e) Gravel layer	m ³	97.94	430 951	R 42 207 313.21
		(i) Sand layer transition zone	m ³	97.94	19 6/ 6	R 1 940 052.00
		(b) Structural	m ³	1 981 85	62 641	R 124 145 623 04
				1.001.00	02 041	11 124 140 020.04
8.3.5		Formwork	2			
		(a) Gang formed	m² 2	475.00	84 430	R 40 104 258.27
		(b) Intricate	m			
		SABS 1200 D-1988 D: Earthworks				
		Quarry excavation to stockpile or dispose				
8.3.2	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³	31.60		R 0.00
		b) Extra over for:				
		1) Intermediate excavation	m ³	5.40		R 0.00
		2) Hard rock excavation	m ³	36.50		R 0.00
		3) Boulder excavation, Class A	m ³			R 0.00
		4) Boulder excavation, Class B	m ³			R 0.00
<u> </u>						P 064 194 910
L		OUD-TOTAL	1			r\ 904 104 819

Table G.16: Option 8: Main dam - Zoned concrete faced rockfill dam (option 2); Saddledam - Zoned earthfill embankment dam - Cost breakdown

Item		Unit	Rate	Cost
DIRECT COSTS				
Dam forming and excavation		Sum		964 184 818.61
Diversion works		Sum		83 635 941.00
Intake and outlet works		Sum		105 697 998.73
Spillway and chute		Sum		121 915 185.33
Measurng weirs		Sum		
SUB TOTAL (ACT	TIVITIES)			R 1 275 433 943.66
Landscaping		% Direct Costs	5	R 63 771 697.18
Miscellaneous		% Direct Costs	10	R 127 543 394.37
SUB TOTAL A			-	R 1 466 749 035.21
Preliminery and General		% of Sub total A	30	R 440 024 710.56
Infrastructure		- 4		
Road deviations		R/km		R 0.00
Housing and accomodation		Lump sum		0
Access roads		R/km		R 0.00
Pipeline		R/km		0
Water to site- Construction		Lump sum		0
Electricty Supply and deviation		Lump sum		0
Social (Relocation)		Lump sum		0
Environmental		Lump sum		0
				24 000 772 745 77
SUB TOTAL B	1			R 1 906 //3 /45.//
Contingencies		% of sub total B	10	R 190 677 374.58
				2 2 007 454 420 25
SUB TOTAL C	1			R 2 097 451 120.35
Planning design and supervision		% of sub total C	15	R 314 617 668.05
				2 2 442 000 700 40
SUB TOTAL D	1			R 2 412 068 788.40
VAT		% of sub total D	0	K U.UU
				D 2 442 000 700
NETT PROJECT COST	1		1	R 2 412 U68 788
Social (Relocation)			-	0
Environmental				0
Total Project Cost				R 2 412 068 788

Table G.17: Diversion works – Bill of quantities

	DIVERSION WORKS BOQ					
ITEM NO	PAY- MENT	DESCRIPTION	UNIT	RATE (R)	QTY	AMOUNT (R)
		STAGE 1: PORTALS AND TUNNELS				
1	1.0	SITE CLEARANCE				
	1.1	Clear and grub (a) Portal footprints	ha	16 946.00	0.85	R 14 319.37
	1.2	Remove and grub large trees and tree stumps of girth				
		(a) Over 1 m and up to and including 2m	No			R 0.00
	1.3	Remove topsoil to nominal depth of 150 mm and stockpile	m³	30.86	1268	R 39 115.05
2	2.0	EXCAVATION AND BACKFILL FOR DAMS AND WATERWAYS Bulk Excavation				
	2.1	Inlet portal (a) Excavate in all materials (i) Excavation (stockpile)	m³	30.33	29 250	R 887 152.50
		(b) Extra over for:				
		(i) Intermediate	m ³	0.00	2 925	R 0.00
		(II) Hard Rock	m ³	42.60	2 925	R 124 605.00
		(iii) Boulder, Class R	m ³	42.58	1 463	R 239 499.00 R 62 273 25
	2.2	Outlet Portal		12.00	1.00	
		(a) Excavate in all materials				
		(i) Excavation (stockpile)	m³	30.33	46 800	R 1 419 444.00
		(b) Extra over for:	m ³	0.00	11 700	P 0 00
		(i) Hard Bock	m ³	42.60	11 700	R 498 420 00
		(iii) Boulder. Class A	m ³	163.76	7 020	R 1 149 595.20
		(iv) Boulder, Class B	m³	42.58	2 340	R 99 637.20
	2.3	Dewatering	Sum	100 000.00	1	R 100 000.00
		SUB TOTAL: STAGE 1				R 4 634 060.57
		STAGE 2 Cofferdam				
3		SITE CLEARANCE				
	3.1	Clear and grub				
		(a) Embankment footprint	ha	16 946.00	0.56	R 9 548
	3.2	Remove and grub large trees and tree stumps of girth				
		(a) over 1 m and up to and including 2 m	No	00.00	0	R 0
4	3.3	Remove topsoil to nominal depth of 150 mm and stockpile	m³	30.86	846	R 26 108
7	4.1	(a) Excavate all materials				
		(i) Topsoil at Upstream & Downstream cofferdam	m³	30.33	5 634	R 170 885
5	5.1	EMBANKMENT CONSTRUCTION				
		Earthfill Upstream & Downstream Cofferdam Construction.				
		(a) Forming Embankment Using material from designated borrow areas or commercial sources				
1		(i) Soil cement at 3% cement	m³	257.08	5130	R 1 318 836
		(ii) Rockfill	m ³	113.12	31190	R 3 528 105
┣──		SUB TOTAL: COFFERDAM				R 5 053 481
6						10 0 0 0 0 0 0 1
Ē	6.1	TUNNEL EXCAVATION				
		(a) Tunnel	M3	1 542.50	37 181	R 57 351 245
1	6.2	ROCK SUPPORT				
		(a) Rockbolts	m	257.08	15 780	R 4 056 771
1		(b) Shotcrete	m ³	5 398.74	413	K 2 230 326
1		(c) remotioning mesh	m r	11.12	/4 301	1 3 7 30 125
	6.3	DEWATERING	Sum	550 000.00	1	R 550 000
		SUB TOTAL: TUNNEL				R 69 923 466

The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study Raw Water

		SUB TOTAL: STAGE 1 + STAGE 2				R 79 611 008
		STAGE 3				
7		MEDIUM PRESSURE PIPELINES				
		Supply, lay, and bed pipes complete with couplings				
		(a) 500 mm diameter concrete pipe (class 75D) in concrete	m	138.82	263	R 36 511
		(b) Water control in tunnel	Prov Sum	500 000.00	1	R 500 000
8		PLUG OF TUNNEL				
	8.1	Scheduled Formwork items- Class 1				
		(a) Vertical formwork	m²	636.60	310	R 197 346
	8.2	Scheduled Concrete items Strenath and Mass concrete				
		(a) Sealing of bulkheads shaft with mass concrete 25 Mpa/19 mm	m ³	1 658.00	1 050	R 1 740 900
		(b) Plug 25 MPa/19 mm	m³	1 658.00	708	R 1 173 035
	8.3	<u>Joints</u> (a) Swellable water stops	m	231.37	30	R 6 941
	8.4	Miscellaneous and Sundry items (a) Bulkheads incl reinforcement at 120 kn/m³	No	1 542 50	240	R 370 200
		Sub total: STAGE 3				R 4 024 933
		Nett cost				R 83 635 941

Table	G.18:	Spillway	and	chute -	Bill	of	quantities
-------	-------	----------	-----	---------	------	----	------------

		SPILLWAY AND CHUTE				
ITEM NO	AYMEN	DESCRIPTION	UNIT	RATE (R) #REF!	QTY	AMOUNT (R)
		SABS 1200 - GA				
8		CONVENTIONAL CONCRETE FOR DAMS				
	8.1.1 8.1.1.1	Scheduled Formwork items Class F4 (a) Verical (i) Chute (b) Sloped (i) Ogee of spillway (ii) Round	m² m² m²	637 822 822	20 000 2 390 0	R 12 732 000 R 1 964 371 R 0
		(c) Sloping				
		(i) Stilling basin blocks	m²	822	33	R 27 126
		(ii) Horizontal	m²	822	0	R 0
	8.1.2	Scheduled Reinforcement items	t	9 720	3 149	R 30 603 732
	8.1.2.1	Anchors				
		(a) Anchor bars (Y32 @ 2.5 m x 2 m)	t	12 854	199	R 2 562 987
	8.1.3	Scheduled Concrete items				
	8.1.3.1	Strength & Mass Concrete				
		(a) Grade 25 MPa/19 mm (i) Spillway, bridges and retaining wall	m³	1 542	43 904	R 67 722 424
	8.1.3.2	Secondary Concrete				
		(a) Grade 25 MPa/19 mm	m³	1 542	439	R 677 224
	8.1.3.3	Keyways on contraction joints (a) Bridges dimensions to be given in detail design	m	100	20	R 2 000
		(c) - G				
	8.1.3.4	<u>Unformed Surface Finishes</u> Class U2 (Wood-floated) finish (a) Chute and Stilling basin floor (b) Top of bridges	m² m²	16 16	53 909	R 835 590 R 0
τοτα	L CARRI	ED FORWARD	1	1		R 117 127 454
					1	

ΤΟΤΑ	L BROU	GHT FORWARD				R 117 127 454
16		WATERSTOPS, JOINTING AND BEARINGS				R 0
						R 0
	16.1	Scheduled items				R 0
						R 0
		Waterstops				R 0
						R 0
		(a) 250 mm Centre bulb PVC waterstop	m	685	264	R 180 956
						R 0
	16.2	Joint sealants				R 0
		(a) Chute wall - 12mm expanding cork	m	10	264	R 2 641
		(b) Chute wall - 12m Impregnated Bitumen Fibre board	m	10	264	R 2 641
		(c) Chute wall - 12 x 12 mm Polysulphide sealant	m	10	264	R 2 641
						R 0
17		SUB-SOIL DRAINAGE				R 0
	17.1	Scheduled items				R 0
		Excavating soft material situated within the following depth ranges below				R 0
		(a) 0 m to 1.5 m	m³	21	213	R 4 477
		(b) Extra over sub-item (a), irrespective of depth, for:			-	R 0
		(i) Excavation in hard material	m³	4	107	R 426
						R 0
	17.2	Natural permeable material in sub-soil drainage systems				R 0
		(a) Sand as specified on detail drawings	m³	550	6 077	R 3 342 291
						R 0
	17.3	Pipes in sub-soil drainage system				R 0
		(a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II	m	400	564	R 225 600
		(b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech	m	330	2 538	R 837 540
						R 0
	17.4	Caps to higher ends of sub-surface drain pipes				R 0
		(a) High end of pipes of Drainex pipes	No	50	28	R 1 410
						R 0
	17.5	Concrete outlet structures for sub-soil drainage systems complete as per drawings				R 0
		(a) Concrete 1500 mm dia	No	600	8	R 4 800
						R 0
	17.6	Overhaul for material hauled in excess of 1.0 km freehaul				R 0
		(a) Sand for filter material (10 km)	m³.km	3	60 769	R 182 307
						R 0
ΤΟΤΑ	L CARR	IED FORWARD TO SUMMARY				R 121 915 185

Table G.19: In	take and outlet	works - Bill of	quantities
----------------	-----------------	-----------------	------------

	Intake and outlet works					
				RATE		
ITEM	AYMEN		UNIT	#DEEI	QTY	AMOUNT
NO				#REF! (R)		(R)
1	1.1	Earthworks		()		
		(a) Clearing and grubbing	ha	20 567	0.23	R 4 739
		(b) Excavation - soft	m ³	180	3 904	R 702 557
		(c) Excavation - rock	m ³	298	3 904	R 1 164 237
		(d) Rockfill to abutments	m ³	50		R 0
2	2.1	Rock Support				
		(a) Rockbolts - 3m long	no	437		R 0
		(b) Rock anchors - 20m long	no	2 982		R 0
		(c) Rock anchors - 2m long, 25mm	no	219		R 0
		(d) Shotcrete and mesh - 75 mm long	m ²	300		R 0
2						
3	3.1					
	0.1	(a) Smooth vertical	2	488	1 373	P 670 513
		(a) Smooth Veritcal	m 2	400	204	R 0/0 515
		(b) Smooth holizonial	m- 2	400	234	R 143 007
			m	730		K U
	3.2	Unformed surface finish	m²	14		R 0
	33	Reinforcing				R 0
	0.0			14 140		R O
		(a) Mild steel	1	9 720	54	P /01 8/0
			t	9720	51	R 491 049
		(C) Mesn	t	59		K U
	3.4	Concrete				
		(a) Mass	m ³	1 157		R 0
		(b) Structural	m³	1 414	506	R 715 487
	3.5	Miscellaneous				
		(a) Bridge bearings	No	16 196		R 0
		(b) Joints	m	171		RO
		(c) Other e.g Rainwater goods, ducting, etc	Sum	102 833		R 0
4		INTAKE TOWER AND OUTLET WORKS				
	4.1	Drilling and grouting				
		(a) Consolidation grouting	m drill	0		R 0
	4.2	Formwork				
		(a) Smooth vertical - curved and plain	m ²	540	1 576	R 851 199
		(b) Smooth horizontal	m ²	850	162	R 137 660
		(c) Intricate	m ²	685	-	R 0
		(d) Form openings	m ²			R 0
	4.3	Uniform surface finish	m²	16	451	R 6 991
I	4.4	Reinforcing				
		(a) Mild steel	t	14 140		R 0
I		(b) High yield steel	t	9 720	1 662	R 16 150 213
I		(c) Mesh	t	77		R 0
		(d) Mechanical rebar couples	No			R 0
	4.5	Concrete				
I		(a) Mass	m ³	1 474		R 0
		(b) Structural	m ³	1 591	20 086	R 31 957 534
TOTA	L CARRI	ED FORWARD				R 52 996 584

The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study Raw Water

ΤΟΤΑ	L BROU	IGHT FORWARD				R 52 996 584
	4.6	Structural Steelwork				
		(a) Steel sections	t	35 992		R
		(b) Sheeting	m ²	411		R
	4.7	Miscellaneous				
		(a) Waterstops	m	685		R
		(b) Other e.g Conduits, outlets, water proofing, etc.	Sum	154 250		R
		SUB TOTAL A				R 52 996 584
5	5.1	Site works				
		(a) Site access roads	km	1 500 000	1	R 1 500 000
		(b) Site services	Sum	0		R
6	6.1	Contractors accommodation				R
		CIVIL CONSTRUCTION WORK				R 54 496 584
7	7.1	Mechanical Items				
		(a) Gates and screens	Sum	17 918 494	1	R 17 918 49
		(b) Lifting equipment	Sum	8 339 060	1	R 8 339 06
		(c) Pipework and valves	Sum	22 132 348	1	R 22 132 34
8	8.1	Electrical Installation	Sum	2 811 513	1	R 2 811 51
		MECHANICAL TOTAL				R 51 201 41

Appendix H

Smithfield Dam: Comparison of

BoQs for Primary Main Dam Type

Options

P WMA 11/U10/00/3312/3/1/5 – Engineering feasibility design report: Supporting document 5: Dam type selection report

Table H.1: Comparison of BoQs for Primary Main Dam Type Options

					Option 1			Option 4			Optio	n 6	Option 7		
Main dam type: Saddle dam type				RCC Earthfill			Zoned ECRD			Cor	nposite (RO	CC + ECRD)	Zoned CFRD		
ITEM	PAY											Earthf			
NO.	ITEM		UNIT	RAIE	QUANTIT	AWOONT	RATE	QUANTIT	AMOUNT	RATE	QUANTIT	AMOUNI	RATE	QUANTIT	ANICONT
		SABS 1200 DE-1984 DE: Small earth dams													
			1												
8.3.1	8.3.1	Site clearance													
	8.3.1.1	Clear and strip site	ha	23 250.00	19.9	R 462 277.19	23 250.00	29.5	R 686 067.60	23 250.00		R 0.00	23 250.00	30.7	R 713 068.99
	0.04.0														
	8.3.1.2	Clear and grub large trees	No			P 0.00			P 0 00	······		P 0 00			P 0 00
		b) over 2 m and up to and including 3 m	No			R 0.00			R 0.00			R 0.00			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00			R 0.00			R 0.00			R 0.00

	8.3.1.6	Clearing of basin	ha			R 0.00			R 0.00			R 0.00			R 0.00
000000000000000000000000000000000000000			<u> </u>												
832	832	Remove topsoil to nominal depth 150 mm (or other stated depth), stockpile and maintain	m ³	20.00	198 829	R 3 976 577 97	20.00	295 082 8	R 5 901 656 76	20.00		R 0.00	20.00	306 696 3	R 6 133 926 84
0.0.2	0.0.2			20.00	100 020	10000011.01	20.00	200 002.0	100001000.70	20.00		1(0.00	20.00	000 000.0	1100 100 020.04
8.3.3	8.3.3	Excavation	1												
	1	a) Material unsuitable for embankment													
		(i) Removal to designated spoil dumps	3												
		In the dam basin, spreading and trimming	mř	31.60	671 296	R 21 212 954.54	31.60	2 474 259.0	R 78 186 584.43	31.60	709 321.0	R 22 414 543.60	31.60	2 217 278.2	R 70 065 991.21
		essential excavations for (Stockpiled):	m ³	30.30	2 322 213		30.30	6 067 554.8		30.30	4 667 443.6		30.30	6 038 261.4	
	1	c) Extra over items (b) (1) - (4) for excavation in:					-								
		1) Intermediate material	m ³	INCL			INCL			Incl			Incl		
		2) Hard rock material	m³	36.50	1 660 957	R 60 624 928.28	36.50	3 364 209.1	R 122 793 630.59	36.50	2 619 931.6	R 95 627 503.49	36.50	4 839 641.4	R 176 646 912.41
		Importing material													
		a) Dolerite	m	300.00		R 0.00	300.00			300.00		R 0.00	300.00		R 0.00
		b) River Sand	mř	290.00	86 544	R 25 097 760.00	290.00			290.00	136 991.5	R 39 727 546.01	290.00	86 544.5	R 25 097 899.90
	0.25	Forming ombonium ontifrom attacknilled material 8,22h													
0.3.2	0.3.3	(a) Core (impervious earthfill)	m ³	48 37	336 835	R 16 292 715 54	48 37	1 259 625 9	R 60 928 103 67	48 37	769 376 2	R 37 214 728 35	48 37	336 835 1	R 16 292 715 54
		(b) Upstream and downstream shells (semi pervious earthfill)	m ³	48.37	861 785	R 41 684 531.92	48.37	861 784.8	R 41 684 531.92	48.37	861 784.8	R 41 684 531.92	48.37	861 784.8	R 41 684 531.92
		(c) Rockfill (Impervious layer)	m ³	65.00	0	R 0.00	65.00	3 810 315.7	R 247 670 521.87	65.00	2 340 147.9	R 152 109 610.94	65.00	4 336 175.9	R 281 851 430.68
		(d) Rip-rap	m ³	438.52	19 876	R 8 716 008.48	438.52	19 876.0	R 8 716 008.48	438.52	19 876.0	R 8 716 008.48	438.52	19 876.0	R 8 716 008.48
		(e) Gravel layer	m ³	97.94	39 752	R 3 893 304.16	97.94	86 652.4	R 8 486 734.32	97.94	64 975.5	R 6 363 696.47	97.94	430 950.7	R 42 207 313.21
		(f) Sand layer transition zone	m³	97.94	19 876	R 1 946 652.08	97.94	19 876.0	R 1 946 652.08	97.94	19 876.0	R 1 946 652.08	97.94	19 876.0	R 1 946 652.08
		(g) Blanket and chimney drains	m ³	789.45	66 669	R 52 631 460.52	789.45	160 469.4	R 126 682 582.32	789.45	117 115.6	R 92 456 888.52	789.45	66 668.5	R 52 631 460.52
		(h) RCC concrete	m ³	1 156.71	1 498 979	R 1 733 883 523.84	1 156.71	0.0	R 0.00	1 156.71	598 283.3	R 692 040 224.32			
	ļ	(i) IVRCC concrete	m³	45.40	120 634	R 5 476 766.85	45.40		R 0.00	45.45	53 716.2	R 2 441 399.03			
		(j) Structural/CVC concrete	m	1 981.85	13 000	R 25 764 050.00	1 981.85	29 300.0	R 58 068 205.00	1 981.85	13 000.0	R 25 764 050.00	1 981.85	52 638.9	R 104 322 397.63
833		Formwork													
0.0.0		(a) Gang formed	m ²	475.00	120 634	R 57 300 974.78				475.00	53 716.2	R 25 515 171.35	475.00	84 430.0	R 40 104 258.27
		(b) Intricate	m²												
	İ		1												
		SABS 1200 D-1988 D: Earthworks													
		Quarry excavation to stockpile or dispose													
														<u> </u>	
8.3.4	8.3.2	Bulk excavation													
		· · · · · · · · · · · · · · · · · · ·	3	<u> </u>				ļ					.		
		a) Excavate in all materials and backfill or dispose, as ordered	m			R 0.00	31.60		R 0.00	31.60		R 0.00	31.60		R 0.00
		b) Extra over for:													
		1) Intermediate excavation	m ³			R 0.00	5 40		R 0.00	5 40		R 0.00	5 40		R 0 00
		2) Hard rock excavation	 			R 0.00	36.50		R 0.00	36.50		R 0.00	36.50		R 0.00
		3) Boulder excavation. Class A	m ³			R 0.00			R 0.00			R 0.00			R 0.00
		4) Boulder excavation, Class B	m ³			R 0.00			R 0.00			R 0.00			R 0.00
	ļ														
		SUB-TOTAL: DAM FORMING AND EXCAVATION				R 2 058 964 486.14			R 761 751 279.03			R 1 244 022 554.55		ļ	R 868 414 567.69
			<u> </u>	<u> </u>											
						D 82 625 044 00			P 82 625 044 00			P 82 625 044 00			P 82 625 044 00
			1	<u> </u>		ד o3 טאד 941.00 רגא און אין אין אין אין אין אין אין אין אין אי			r os oso 941.00			03 030 941.00 r. م			אן דע גע א דע
			1	1											
		SUB-TOTAL: INTAKE AND OUTLET WORKS	<u> </u>			R 105 697 998.73			R 105 697 998.73			R 105 697 998.73			R 105 697 998.73
	ļ							ļ							
		SUB-TOTAL: SPILLWAY AND CHUTE						<u> </u>	R 121 915 185.33		<u> </u>				R 121 915 185.33
			1												
	İ	TOTAL	1	1		R 2 248 298 425.87		1	R 1 073 000 404.08			R 1 433 356 494.28			R 1 179 663 692.74

P WMA 11/U10/00/3312/3/1/5 – Engineering feasibility design report: Supporting document 5: Dam type selection report

Appendix I

Langa Balancing Dam: Results

from slope stability analysis

Table I.1: Langa soil parameters

Material	Description	Unit weight (kN/m³)	Cohesion (kPa)	Angle of internal friction (Ø) (Degrees)		
А	Hard rockfill: Unweathered shale and dolerite	35	0	20.6		
В	Concrete	35	250	23		
С	Undisturbed earth dolerite foundation	40	0	21.58		

Table I.2: Slope stability analysis results

ıkment Type	Analysis	Analysis Shell ransition Zone opes								Downstream Slope				
par			-	N		Steady State (1)		Seismic ⁽²⁾		Steady State (1)		Seismic ⁽²⁾		
Ë				US	DS	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾	FOS ⁽³⁾	Req ⁽⁴⁾	
Concrete faced rockfill	1	С	С	1.4	1.4	1.213 (Not ok)	> 1.5	1.125 (Not ok)	>1	1.028 (Not ok)	> 1.5	0.986 (Not ok)	<1	
dam	2	С	С	1.6	1.6	1.335 (Not ok)	> 1.5	1.233 (Not ok)	> 1	1.163 (Not ok)	> 1.5	1.112 (ok)	> 1	
	1	С	С	1.7	1.7	1.397 (Not ok)	> 1.5	1.287 (Not ok)	> 1	1.230 (Not ok)	> 1.5	1.175 (ok)	> 1	
	1	С	С	1.8	1.8	1.457 (Not ok)	> 1.5	1.339 (Not ok)	> 1	1.303 (Not ok)	> 1.5	1.243 (ok)	> 1	
	1	С	С	2	2	1.502 (ok)	> 1.5	1.456 (ok)	> 1	1.462 (Not ok)	> 1.5	1.391 (ok)	>1	
	1	С	С		2.2					1.577 (ok)	> 1.5	1.495 (ok)	> 1	

Figure I.1: CFRD Downstream slope analysis, 1 (V):1.4 (H), steady state flow analysis

Figure I.2: CFRD Downstream slope analysis, 1 (V):1.4 (H), seismic analysis

Figure I.3: CFRD Downstream slope analysis, 1 (V):1.6 (H), steady state flow analysis

Figure I.4: CFRD Downstream slope analysis, 1 (V):1.6 (H), seismic analysis

Figure I.5: CFRD Downstream slope analysis, 1 (V):1.7 (H), steady state flow analysis

Figure I.6: CFRD Downstream slope analysis, 1 (V):1.7 (H), seismic analysis

Figure I.7: CFRD Downstream slope analysis, 1 (V):1.8 (H), steady state flow analysis

Figure I.8: CFRD Downstream slope analysis, 1 (V):1.8 (H), seismic analysis

Figure I.9: CFRD Downstream slope analysis, 1 (V):2 (H), steady state flow analysis

Figure I.10: CFRD Downstream slope analysis, 1 (V):2 (H), seismic analysis

Figure I.11: CFRD Downstream slope analysis, 1 (V): 2.2 (H), steady state flow analysis

Figure I.12: CFRD Downstream slope analysis, 1 (V):2.2 (H), seismic analysis

Figure I.13: CFRD Upstream slope analysis, 1 (V):1.4 (H), steady state flow analysis

Figure I.14: CFRD Upstream slope analysis, 1 (V):1.4 (H), seismic analysis

Figure I.15: CFRD Upstream slope analysis, 1 (V):1.6 (H), steady state flow analysis

Figure I.16: CFRD Upstream slope analysis, 1 (V):1.6 (H), seismic analysis

Figure I.17: CFRD Upstream slope analysis, 1 (V):1.7 (H), steady state flow analysis

Figure I.18: CFRD Upstream slope analysis, 1 (V):1.7 (H), seismic analysis

Figure I.19: CFRD Upstream slope analysis, 1 (V):1.8 (H), steady state flow analysis

Figure I.20: CFRD Upstream slope analysis, 1 (V):1.8 (H), seismic analysis

Figure I.21: CFRD Upstream slope analysis, 1 (V): 2 (H), steady state flow analysis

Figure I.22: CFRD Upstream slope analysis, 1 (V):2 (H), seismic analysis

Appendix J

Langa Balancing Dam: Typical

cross-sections for each of the

chosen dam types

Appendix K Langa Balancing Dam: Longsections of geotechnical (foundation) investigations

Appendix L

Langa Balancing Dam: Results

from balancing exercise –

Balancing spreadsheets

Table L.1: Option 1 - Concrete faced rockfill dam balancing spreadsheet

Table L.2: Option 2 - Roller compacted concrete dam balancing spreadsheet

	1											
				A	B	c	D	E	F	G		
No.	Dam type		Material (source)	Overburden for spoil: Organic topsoil	Impervious core	Semi-pervious fill: Residual silty clayey sand and sandy silty clay	Semi pervious fill: Highly weathered shale	Soft rockfill: Moderately weathered shale	Hard rockfill: Unweathered shale and dolerite	Imported sand	SUM	Total cost (ZAR)
				Volume	Volume	Volume	Volume	Volume	Volume	Volume		
				(m ²)	(m ²)		(m ²)	(m ²)	(m ²)			
			(1) Required material - Main wall									
			(a) Core (impervious earthfill)								0	
			(b) Upstream and downstream shells (semi pervious earthfill)								0	
	1		(c) Rockfill (Impervious layer)								0	
			(d) Rip-rap								0	
			(e) Gravel layer								0	
	1		(f) Sand layer transition zone								0	
	1		(g) Blanket and chimney drains								0	
	1		(h) Concrete						617 016		617 016	
			(i) Downstream protection layer							0	0	
	1		(3) Required material - Infrastructure									
	1		(a) Diversion works concrete aggregate								0	
	1		(b) Intake structure concrete aggregate						4 748		4 748	
	(2) Roller		(c) Spillway and chute concrete aggregate								0	
2	compacted		(d) Outlet works concrete aggregate								0	0 1 501 107 651
-	concrete dam		(e) Apron slab								0	K1 391 187 031
	(RCC)		TOTAL REQUIRED	0	0	0	0	0	621 764	0		
	1		g (1) Quarry I	20 000	0	120 000	180 000	350 000	1 200 000			
	1		2 (2) Portal excavation	8 000	0	230 000	70 000	50 000	40 000			
	1		ថ្ងី (3) Tunnel spoil	0	0	0	0	0	250 000			
	1		철 (4) Spillway approach	15 000	0	35 000	280 000	20 000	0			
	1		(5) Dam Excavation	71 155	0	0	150 203	150 203	175 236			
	1		(6) Other	0	0	0	0	0	0			
	1		TOTAL AVAILABLE	114 155	0	385 000	680 203	570 203	1 665 236	0		
1			Material needed ('+' = Surplus; '-' = Deficit)	114 155	0	385 000	680 203	570 203	1 043 472	0		
1			To be stockpiled for later use				L					
1			To be dumped	96 764	0	280 653	523 682	265 857	465 236		1 632 192	
1			Dam forming	0	0	0	0	0	621 764	0		
1			Untouched	17 391		104 347	156 521	304 346	578 236			
			Percentage remaining (%)	15	1	27	23	53	35	1		

Table L.3: Option 3 - Composite dam balancing spreadsheet

MAIN & SADDLE DAM WALLS + DIVERSION TUNNELS												
				A	8	C	Ð	E	F	G		
No.	Dam type	Configuration	Material (source)	Overburden for spoil: Organic topsoil	Impervious core	Semi-pervious fill: Residual silty clayey sand and sandy silty clay	Semi pervious fill: Highly weathered shale	Soft rockfill: Moderately weathered shale	Hard rockfill: Unweathered shale and dolerite	Imported sand	SUM	Total cost (ZAR)
				Volume (m ³)	Volume (m ²)	Volume (m ³)	Volume (m ²)	Volume (m ³)	Volume (m ³)	Volume (m ³)		
			(1) Required material - Main wall									
			(a) Core (impervious earthfill)								0	
			(b) Upstream and downstream shells (semi pervious earthfill)								0	
			(c) Rockfill (Impervious layer)					350 000	285 657		635 657	
			(d) Rip-rap								0	
			(e) Gravel layer						86 764		86764	
			(f) Sand layer transition zone								0	
			(g) Blanket and chimney drains						240.052		0	
			(n) Concrete						310 852		310 852	
			(2) Required material defeature								0	
			(a) Diversion works concrete announts								0	
			(a) Diversion works concrete aggregate (b) Intake structure concrete aggregate						4 749		4 749	
			(c) Soillway and chute concrete appreciate						4740		0	
	(3) Composite		(d) Outlet works concrete aggregate								0	
3	dam: RCC spillway		(e) Apron slab								0	R 1 125 550 530
	section and CFRD		TOTAL REQUIRED	0	0	0	0	350 000	688 021	0		
	left and right frank		🖞 (1) Quarry I	20 000	0	120 000	180 000	350 000	1 200 000			
			2 (2) Portal excavation	8 000	0	230 000	70 000	50 000	40 000			
			ទ្ធ៍ (3) Tunnel spoil	0	0	0	0	0	250 000			
			4) Spillway approach	15 000	0	35 000	280 000	20 000	0			
			(5) Dam Excavation	98 315	0	0	145 455	145 455	169 698			
			(6) Other	0	0	0	0	0	0			
			TOTAL AVAILABLE	141 315	0	385 000	675 455	565 455	1 659 698	0		
			Material needed ('+' = Surplus; '-' = Deficit)	141 315	0	385 000	675 455	215 455	971 677	0		
			To be stockpiled for later use	105.101		202.022	520 704	245.455	450.000		4 647 040	
			To be dumped	125 121	J	287 832	529704	215 455	459 698	0	101/810	
			Untouched	16.105	0	07.169	145 75 2	530 000	511 070	J		
			Undersed	10 195	0	3/ 108 0	143/52	0	0			
			Percentage remaining (%)	11		25	22	0	31			
			Percentage remaining (%)	11		25	22	0	31			

Appendix M

Langa Balancing Dam: Results

from balancing exercise – Bill of

quantities

P WMA 11/U10/00/3312/3/1/5 – Engineering feasibility design report: Supporting document 5: Dam type selection report

Table M.1: Langa Dam: Option 1: Concrete faced rockfill dam (CFRD) – Bill of quantities

A	EC	Option 1: Concrete faced rockfill dam						
No	PAY	DESCRIPTION	UNIT	RATE (Rand)	QUANTITY	Total Amount (Rand)		
		SABS 1200 DE-1984 DE: Small earth dams Embankment excavation and formation						
8.3.1	8.3.1 8.3.1.1	Site clearance Clear and strip site	ha	23 250.00	10.8	R 250 732.10		
	8.3.1.2	Clear and grub large trees a) over 1m and up to and including 2 m b) over 2 m and up to and including 3 m c) over 3 m, in increments of 1 m	No No No			R 0.00 R 0.00 R 0.00		
	8.3.1.6	Clearing of basin	ha			R 0.00		
8.3.2	8.3.2	Remove topsoil to nominal depth 150 mm (or other stated depth), stockpile and maintain	m³	20.00	107 842	R 2 156 835.30		
8.3.3	8.3.3	Excavation a) Material unsuitable for embankment (i) Removal to designated sociil dumos						
		in the dam basin, spreading and trimming	m ³	31.60	1 286 523	R 40 654 129.40		
		() Material solutable for employment from essential excavations for (Stockpiled): c) Extra over items (b) (1) - (4) for excavation in:	m³	30.30	1 135 046	R 34 391 890.15		
		1) Intermediate material 2) Hard rock material	m ³ m ³	INCL 36.50	785 046	R 28 654 174.60		
		Importing material a) Dolerite b) River Sand	m³ m³	300.00 290.00	0	R 0.00 R 0.00		
8.3.2	8.3.5	Forming embankment from stockpiled material 8.33b (a) Core (impervious earthfill) (b) Upstream and downstream shells (semi pervious earthfill) (c) Rockfill (Impervious layer) (d) Rip-rap (e) Gravel layer (f) Sand layer transition zone (g) Blanket and chimney drains (h) IVRCC (h) RCC concrete	m ³ m ³ m ³ m ³ m ³ m ³ m ³ m ³	48.37 48.37 65.00 438.52 97.94 97.94 789.45 45.40 1 156.71 1 081 85	0 941 713 0 173 507 0 8 973	R 0.00 R 0.00 R 61 211 341.37 R 0.00 R 16 993 275.88 R 0.00 R 0.00 R 0.00 R 0.00 R 17 783 419 03		
8.3.3		Formwork (a) Gang formed (b) Intricate SABS 1200 D-1988 D: Earthworks	m² m²	475.00	0	R 0.00		
8.3.4	8.3.2	Quarry excavation to stockpile or dispose Bulk excavation						
		a) Excavate in all materials and backfill or dispose, as ordered	m ³			R 0.00		
		b) Extra over for: 1) Intermediate excavation 2) Hard rock excavation 3) Boulder excavation, Class A 4) Boulder excavation, Class B	m ³ m ³ m ³			R 0.00 R 0.00 R 0.00 R 0.00		
		SUB-TOTAL				P 202 005 709		
		SUD-IUTAL				R 202 095 798		

Table M.2: Langa Dam: Option 1: Concrete faced rockfill dam (CFRD) – Total cost summary

AECOM Option 1: Summary							
Item	Unit	Rate	Cost				
DIRECT COSTS							
Dam forming and excavation	Sum		202 095 797.82				
Diversion works	Sum		4 587 520.00				
Intake and outlet works	Sum		65 675 453.50				
Spillway and chute	Sum		17 983 317.11				
Measurng weirs	Sum						
			D 200 242 090 44				
SUBTOTA	L (ACTIVITIES)		R 290 342 088.44				
Landscaping	% Direct Costs		5 R 14 517 104.42				
Miscellaneous	% Direct Costs	1	0 R 29 034 208.84				
SUB TOTAL A			R 333 893 401.71				
Preliminery and General	% of Sub total A	3	0 R 100 168 020.51				
Infrastructure							
Road deviations	R/km		R 0.00				
Housing and accomodation	Lump sum		0				
Access roads	R/km		R 0.00				
Pipeline	R/km		0				
Water to site- Construction	Lump sum		0				
Electricty Supply and deviation	Lump sum		0				
Social (Relocation)	Lump sum		0				
Environmental	Lump sum		0				
SUBTOTAL B			R 434 061 422 22				
Contingoncios	% of sub-total P	1	P 42 406 142 22				
		1	K 43 400 142.22				
SUB TOTAL C			R 477 467 564.44				
Planning design and supervision	% of sub total C	1	5 R 71 620 134.67				
SUB TOTAL D			R 549 087 699.11				
VAT	% of sub total D		0 R 0.00				
NETT PROJECT COST			R 549 087 699				
Social (Relocation)			0				
Environmental			0				
Total Project Cost		<u> </u>	R 549 087 699				

Table M.3: Langa Dam: Option 2: Roller compacted concrete (RCC) dam – Bill of quantities

	AECOM Option 2: Roller compacted concrete dam								
No	PAY	DESCRIPTION	UNIT	RATE (Rand)	QUANTITY	Total Amount (Rand)			
		SABS 1200 DE-1984 DE: Small earth dams Embankment excavation and formation							
8.3.1	8.3.1 8.3.1.1	Site clearance Clear and strip site	ha	23 250.00	4.6	R 107 232.42			
	8.3.1.2	Clear and grub large trees a) over 1m and up to and including 2 m b) over 2 m and up to and including 3 m c) over 3 m, in increments of 1 m	No No No			R 0.00 R 0.00 R 0.00			
	8.3.1.6	Clearing of basin	ha			R 0.00			
8.3.2	8.3.2	(or other stated depth), stockpile and maintain	m³	20.00	46 121	R 922 429.44			
8.3.3	8.3.3	Excavation a) Material unsuitable for embankment (i) Removal to designated spoil dumps							
		in the dam basin, spreading and trimming b) Material suitable for embankment from	m ³	31.60	1 632 192	R 51 577 259.13			
		essential excavations for (Stockpiled): c) Extra over items (b) (1) - (4) for excavation in:	m ³	30.30	621 764	R 18 839 459.64			
		1) Intermediate material 2) Hard rock material	m ³	INCL 36.50	621 764	R 22 694 398.57			
		Importing material a) Dolerite	m ³	300.00	0	R 0.00			
8.3.2	8.3.5	 Kiver sand Forming embankment from stockpiled material 8.33b 	m	290.00		R 0.00			
		(a) Core (impervious earthfill)	m³	48.37	0	R 0.00			
		(b) Upstream and downstream shells (semi pervious earthfill)	m³	48.37	0	R 0.00			
		(c) Rockfill (Impervious layer)	m³	65.00	0	R 0.00			
		(d) Rip-rap	m ³	438.52	0	R 0.00			
		(e) Gravel layer	m° 3	97.94	0	R 0.00			
		(t) Sand layer transition zone	m- ³	97.94	0	R 0.00			
		(g) Blanket and chimney drains	m m ²	789.45	U 59.104	R 0.00			
			m ³	45.40	58 124	R 2 638 846.53			
		(i) CVC concrete	m ³	1 981.85	300	R 594 555.00			
8.3.3		Formwork (a) Gang formed	m ²	475.00	58 124	R 27 609 077.14			
		(b) Intricate SABS 1200 D-1988 D: Earthworks	m						
		Quarry excavation to stockpile or dispose							
8.3.4	8.3.2	Bulk excavation							
		a) Excavate in all materials and backfill or dispose, as ordered	m°			R 0.00			
		1) Intermediate excavation	m ³			P 0 00			
		2) Hard rock excavation	m ³			R 0.00			
		3) Boulder excavation, Class A	m ³			R 0.00			
		4) Boulder excavation, Class B	m ³			R 0.00			
		SUB-TOTAL				R 771 112 177			

Table M.4: Langa Dam: Option 2: Roller compacted concrete (RCC) dam – Total cost summary

AECOM	mary			
Item	Unit	Rate	Co	ost
DIRECT COSTS				
Dam forming and excavation	Sum			771 112 177.28
Diversion works	Sum			4 587 520.00
Intake and outlet works	Sum			65 675 453.50
Spillway and chute	Sum			
Measurng weirs	Sum			
				D 044 275 450 70
SUBIC	UTAL (ACTIVITIES)		-	R 841 375 150.78
Landscaping	% Dire	ct Costs	5	R 42 068 757.54
Miscellaneous	% Dire	ct Costs	10	R 84 137 515.08
SUB TOTAL A				R 967 581 423.40
Preliminery and General	% of S	ub total A	30	R 290 274 427.02
· · ·				
Infrastructure				
Road deviations	R/km			R 0.00
Housing and accomodation	Lumps	sum		0
Access roads	R/km			R 0.00
Pipeline	R/km			0
Water to site- Construction	Lumps	sum		0
Electricty Supply and deviation	Lumps	sum		0
Social (Relocation)	Lumps	sum		0
Environmental	Lump s	sum		0
SUB TOTAL B				R 1 257 855 850.42
Contingencies	% of su	ub total B	10	R 125 785 585.04
SUB TOTAL C				R 1 383 641 435.46
Planning design and supervision	% of su	ub total C	15	R 207 546 215.32
				R 1 591 187 650 78
VAT	% of s	ub total D	0	R 1 331 107 030.70 R 0 00
	/// 01 30		0	N 0.00
NETT PROJECT COST				R 1 591 187 651
Social (Relocation)				0
Environmental				0
Total Project Cost				R 1 591 187 651

Table M.5: Langa Dam: Option 2: Composite dam – Bill of quantities

_						
No	PAY	DESCRIPTION	UNIT	RATE (Rand)	QUANTITY	Total Amount (Rand)
		SABS 1200 DE-1984 DE: Small earth dams Embankment excavation and formation				
8.3.1	8.3.1	Site clearance				
	8.3.1.1	Clear and strip site	ha	23 250.00	7.4	R 172 218.88
	8.3.1.2	Clear and grub large trees				D. o. o.
		a) over 1m and up to and including 2 m	No			R 0.00
		c) over 3 m, in increments of 1 m	No			R 0.00
	8.3.1.6	Clearing of basin	ha			R 0.00
8.3.2	8.3.2	Remove topsoil to nominal depth 150 mm (or other stated depth), stockpile and maintain	m³	20.00	74 073	R 1 481 452.77
833	833	Excavation				
0.0.0	0.0.0	a) Material unsuitable for embankment				
		(i) Removal to designated spoil dumps in the dam basin, spreading and trimming	m ³	31.60	1 617 810	R 51 122 790.64
		 b) Material suitable for embankment from essential excavations for (Stockpiled): 	m³	30.30	1 038 021	R 31 452 037.07
		c) Extra over items (b) (1) - (4) for excavation in:	2			
		1) Intermediate material	m ³	INCL	000.001	D 05 440 707 40
		2) Hard rock material	m	36.50	688 021	R 25 112 767.42
		Importing material	2			
		a) Dolerite	m ³	300.00	0	R 0.00
		b) River Sand	m	290.00		R 0.00
8.3.2	8.3.5	Forming embankment from stockpiled material 8.33b	3			
		(a) Core (impervious earthfill)	m ⁻	48.37	0	R 0.00
		(b) Opstream and downstream snells (semi pervious earthill)	m ³	48.37	0	R 0.00 P 57 844 770 75
		(d) Rin-ran	m ³	438 52	055 057	R 0.00
		(e) Gravel laver	m ³	97.94	86 764	R 8 497 714.48
		(f) Sand laver transition zone	m ³	97.94	0	R 0.00
		(g) Blanket and chimney drains	m ³	789.45	0	R 0.00
		(h) IVRCC	m ²	45.40	26 394	R 1 198 289.61
		(h) RCC concrete	m ³	1 156.71	276 650	R 320 004 180.68
		(i) CVC concrete	m³	1 981.85	7 807	R 15 473 007.89
8.3.3		Formwork				
		(a) Gang formed	m ²	475.00	26 394	R 12 537 170.99
		SABS 1200 D-1988 D: Earthworks Quarry excavation to stockpile or dispose				
8.3.4	8.3.2	Bulk excavation				
		a) Excavate in all materials and backfill or dispose, as ordered	m³			R 0.00
		b) Extra over for:				
		1) Intermediate excavation	m ³			R 0.00
		2) Hard rock excavation	m ³			R 0.00
		3) Boulder excavation, Class A	m³			R 0.00
		4) Boulder excavation, Class B	m ³			R 0.00
						-
	1	SUB-TOTAL		1		R 524 896 401

Table M.6: Langa Dam: Option 2: Composite dam – Total cost summary

AECOM		Option 3: Summary					
Item	Unit	Rate	Cost				
DIRECT COSTS	1 1						
Dam forming and excavation	Sum		524 896 401.20				
Diversion works	Sum		4 587 520.00				
Intake and outlet works	Sum		65 675 453.50				
Spillway and chute	Sum						
Measurng weirs	Sum						
SUB T	OTAL (ACTIVITIES)	r	R 595 159 374.70				
Landscaping	% Direct Costs	5	R 29 757 968.74				
Miscellaneous	% Direct Costs	10	R 59 515 937.47				
			D 604 422 200 01				
SUBTUTAL A		1	K 064 433 200.31				
Preliminery and General	% of Sub total A	30	R 205 329 984.27				
Infrastructure							
Road deviations	R/km		R 0.00				
Housing and accomodation	Lump sum		0				
Access roads	R/km		R 0.00				
Pipeline	R/km		0				
Water to site- Construction	Lump sum		0				
Electricty Supply and deviation	Lump sum		0				
Social (Relocation)	Lump sum		0				
Environmental	Lump sum		0				
SUB TOTAL B			R 889 763 265.18				
Contingencies	% of sub total B	10	R 88 976 326.52				
			D 078 720 E01 70				
SUB TOTAL C	0/ of such total C	1	K 9/8 /39 591./U				
Planning design and supervision		CT	K 146 810 938.75				
SUB TOTAL D	I		R 1 125 550 530.45				
VAT	% of sub total D	0	R 0.00				
NETT PROJECT COST			R 1 125 550 530				
Social (Relocation)			С				
Environmental			0				
Total Project Cost			R 1 125 550 530				

Table M.7: Langa Dam: Bill of quantities for costs common to all options – Diversion works

A	EC	Diversion works				
ITEM NO	PAY- MENT	DESCRIPTION	UNIT	RATE (R)	QTY	AMOUNT (R)
1	4.0					
	1.1	Clear and grub				
	1.2	(a) Portal footprints Remove and grub large trees	ha	16 946.00		R 0.00
		and tree stumps of girth (a) Over 1 m and up to and including 2m	No			R 0.00
	1.3	Remove topsoil to nominal depth of 150 mm and stockpile	m ³	30.86		R 0.00
2	2.0	EXCAVATION AND BACKFILL FOR DAMS AND WATERWAYS Bulk Excavation				
	2.1	Inter portal (a) Excavate in all materials (i) Excavation (stockpile) (b) Extra over for: (i) Intermediate (ii) Hard Rock (iii) Boulder, Class A (iv) Boulder, Class B	m³ m³ m³ m³	30.33 0.00 42.60 163.76 42.58		R 0.00 R 0.00 R 0.00 R 0.00 R 0.00
	2.2	Outlet Portal (a) Excavate in all materials (i) Excavation (stockpile) (b) Extra over for: (i) Intermediate (ii) Hard Rock (iii) Boulder, Class A (iv) Boulder, Class B	m ³ m ³ m ³ m ³	30.33 0.00 42.60 163.76 42.58		R 0.00 R 0.00 R 0.00 R 0.00 R 0.00
			0	400.000.00		R 0.00
	2.3	SUB TOTAL: STAGE 1	Sum	100 000.00		R 0.00
		STAGE 2 Culvert				
3	3.1	Excavation for culvert	m ³	85.00	960	R 81 600
	3.2	75mm minimum thickness Grade 15MPa/19mm concrete blinding layer underneath base	m ³	1 320.00	960	R 121 920
	3.4	Supply and install 2x3m*3m Box culvert, with pre-fabricated slab	m	13 700.00	320.00	R 4 384 000
	3.5	Backfill around culverts	m ³	56.50		R 0
		SUB TOTAL: COFFERDAM				R 4 587 520
6	6.1	TUNNEL CONSTRUCTION TUNNEL EXCAVATION (a) Tunne!	m³	1 542.50		R 0
	6.2	ROCK SUPPORT (a) Rockbolts (b) Shotcrete (c) Reinforcing mesh	m m³ m²	257.08 5 398.74 77.12		R 0 R 0 R 0
	6.3	DEWATERING	Sum	550 000.00		R 0
		SUB TOTAL: TUNNEL SUB TOTAL: STAGE 1 + STAGE 2				R 0 R 4 587 520
		STAGE 3				
7		MEDIUM PRESSURE PIPELINES				
		Supply, lay, and bed pipes complete with couplings				
		(a) 500 mm diameter concrete pipe (class 75D) in concrete (b) Water control in tunnel	m Prov Sum	138.82 500 000.00		R 0 R 0
8		PLUG OF TUNNEL				
	8.1	Scheduled Formwork items- Class 1 (a) Vertical formwork	m²	636.60		R 0
	8.2	Scheduled Concrete items Strength and Mass concrete (a) Sealing of bulkheads shaft with mass concrete 25 Mpa/19 mm (b) Plug 25 MPa/19 mm	m³ m³	1 658.00		R 0 R 0
	8.3	Joints (a) Swellable water stops	m	231 37		RO
	8.4	Miscellaneous and Sundry items				
		(a) Buikneads incl reinforcement at 120 kg/m ³ Sub total: STAGE 3	No	1 542.50		R 0 R 0
		Nett cost		I	L	R 4 587 520

Table M.8: Langa Dam: Bill of quantities for costs common to all options – Spillway and chute

Description Unit Description Unit Description Part a. Author Second Seco		AEC	Spillway and	d chute			
Last Base Base Base (black (black) (bla	ITEM NO	PAYMENT	DESCRIPTION	UNIT	Quantity	Rate	AMOUNT (R)
1 12 Strategy (1) Strat		8.3.3	SABS 1200 DE Excavation a) Material unsuitable for embankment b) Material suitable for embankment from essential excavations for:	m3	51 038	51	R 2 624 181
a a.s. bis top - C. convertioned a convert P(P) basis convertioned a convert P(P) basis bis top - Convert P(P) bas			2) Spillway 3) Pipe trenches 4) Outlet works	m3 m3 m3	0 0 0	0 0 0	R 0 R 0 R 0
IImage: state of the state of t			SABS 1200 - GA CONVENTIONAL CONCRETE FOR DAMS				
Image: Problem in the second secon	8	8.1.1 8.1.1.1	Scheduled Formwork Items Class F4 (a) Verical				
Image: Image:			(i) Chute (b) Sloped	m²	14 619	334	R 4 885 823
Image: Process of the state			(i) Ogee of spillway (ii) Round	m² m²	308 0	411 411	R 126 754 R 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$			(c) Sloping (i) Stilling basin blocks (ii) Horizontal	m² m²	0	0	R 0 R 0
Image: Section of the section of t		8.1.2	Scheduled Reinforcement Items	t	112	12 854	R 1 438 584
8.1.3 Schedular Concests towns no. Image: Schedular Concests towns no. Image: Schedular Concests towns no. Image: Schedular Concests towns no. Image: Schedular Concests towns Image: Schedular Conceschedular Concests town		8.1.2.1	Anchors (a) Anchor bars	m	62	0	R 0
8.1.3. Straight & Mass Concrete m ² G (G		8.1.3	Scheduled Concrete items				
Image: Problem in the set of the set o		8.1.3.1	Strength & Mass Concrete				
8.1.32 Scooday Concesses (a) Gooday 25 MPu19 mm mP			(a) Grade 25 MPa/19 mm (i) Spillway, bridges and retaining wall	m³ m³	6 105 0	1 414 1 414	R 8 631 912 R 0
8.1.33 Revenue on contraction initials m m m R contraction initials 8.1.34 Uniformal Sufficient Finitials m R contraction initials R contraction initials 18 Link output Sufficient Finitials m2 R still R contraction initials 18 Link output Sufficient Finitials m2 R still R contraction initials 18 Link output Sufficient Finitials m R contraction initial still R contraction initials 18 MatterstoreS, Jonnthing And BEARINGS m R contraction initial still R contraction initial still 18 Link output Sufficient S		8.1.3.2	Secondary Concrete (a) Grade 25 MPa/19 mm	m³	0	1 414	R 0
8.1.34 Underned Surface Finishes Cass U2 (Wood-Readed) finish (b) Too of bridges m2 8.314 14 R 117 SER 16 io. Choke an SUBININO AND BEARINGS m2 8.314 14 R 117 SER 16 WATERSTOPS, JONTINO AND BEARINGS m3 2.33 6.85 R 16.75 16.1 Scheduled liams m3 2.33 6.85 R 16.85 17.2 Joint selams m3 2.33 6.85 R 16.85 17.2 Joint selams m3 0 0 R 16.75 17.4 SUB-Solit DAINAGE Scheduled liams Schedule with the following deph ranges below the surface level: m3 0 0 R 16.75 17.7 SUB-Solit DAINAGE Scheduled liams m3 0.00 0 R 16.75 17.7 Sub-Solit DAINAGE Scheduled liams m3 0.00 0 R 16.75 17.7 NakeSolit Bainage systems m3 m3 0.00 0 R 16.75 17.7 NakeSolit DAINAGE Scheduled liams m3 0.00 0 R 16.75 17.8 Sub-Solit DAINAGE Scheduled liams m3 0.00 0 R		8.1.3.3	Keyways on contraction joints (a) Bridges dimensions to be given in detail design	m		0	R 0
16 WATERSTOPS, JONTING AND BEARINGS Image: Comparison of the comparison of th		8.1.3.4	Unformed Surface Finishes Class U2 (Wood-floated) finish (a) Chute and Stilling basin floor (b) Top of bridges	m2 m2	8 314 0	14 14	R 117 558 R 0
18.1 Scheduled items Waterstops m 231 R R (a) 250 mm Centre bulb PVC waterstop m 231 665 R 158 505 16.2 Joint sealants (a) Chute wall -12m mepanding cork (b) Chute wall -12m tripregrated Bitumen Flore board (c) Chute wall -12 x 12 mm Polyauphide sealant m 0 0 R C 17 Sub-SoiL DRAINAGE (c) Schute wall -12 x 12 mm Polyauphide sealant m³ 108 0 R C 17 Sub-SoiL DRAINAGE (c) Schute wall -12 x 12 mm Polyauphide sealant m³ 108 0 R C 17 Sub-SoiL DRAINAGE (c) Schute wall -12 x 12 mm Polyauphide sealant m³ 108 0 R C 17 Numaripermeable material situated within the following depth ranges below the surface level: (a) 0 m to 1.5 m (b) Exra versitic sub-soil drainage systems (a) Sand a sepecified on detail drawings (a) 10 NG, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage systems (a) 100 NG, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage systems complete as per drawings (a) 10 NG, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage systems complete as per drawings (a) 10 NG, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage systems complete as per drawings (a) 10 NG, Class 6, HDPE pressure pipe, n	16		WATERSTOPS, JOINTING AND BEARINGS				
Waterstops m 231 Materstops R C (a) 250 nm Centre bulb PVC waterstop m 231 B685 R 168 060 16.2 Joint sealants (a) Chule wall - 12m merpanding cork (b) Chule wall - 12m merpanding cork (c) Chule wall - 12m merpanding cork (b) Chule wall - 12m tamperpande Bilmen Fibre board m 0 0 R C 17 SUB-SOL DRNINGE Scheduletions Excavation in hard material situated within the following depth ranges below the surface level: (a) 0 m 0 1.5 m m ³ 108 0 R C 17.1 SUB-SOL DRNINGE Scheduletions Excavation in hard material m ³ 108 0 R C 17.2 Natural permeable metrial in sub-sol drainage systems (a) 10 m 0 1.5 m m ³ 108 0 R C 17.3 Pess in sub-sol drainage system (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage system (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage systems (a) Concrete suffer or sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.5 Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.5 Concrete outlet structures for sub-s		16.1	Scheduled items				
(a) 250 mm Centre bulb PVC waterstop m 231 665 R 165 00 mm 16.2 Joint sealants (a) Chute wall - 12m expanding cork (b) Chute wall - 12m expanding cork (c) Chute wall - 12m expanding cork (d) Chute wall - 12m expanding cork (e) Chute wall - 12m expanding cork (f) Chute wall - 12m expanding cork (h) The 1.5m (h) Chute wall - 12m expanding cork (h) The Max expanding cork expanding expanding cork expanding cork			Waterstops				R 0
16.2 Joint sealants m 0 R C (a) Chute wall - 12m Impregnated Blumen Fibre board m 0 R C (b) Chute wall - 12m Impregnated Blumen Fibre board m 0 R C (c) Chute wall - 12 xn P Polysulphide sealant m 0 R C 17 Sub-SOL DRAINAGE m 0 R C (a) 0 m to 1.5 m Scheduled items m³ 108 0 R C (a) 0 m to 1.5 m (b) Extra over sub-item (a), irrespective of depth, for: m³ 108 0 R C (b) Extra over sub-item (a), irrespective of depth, for: (b) Extra over sub-item (a), irrespective of depth, for: m³ 0 R C (b) Extra over sub-item (a), irrespective of depth, for: (b) Extra over sub-item (a), irrespective of depth, for: m³ 0 R C (c) 7.2 Natural permeable material sub-soli drainage systems m³ 002 R C (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II m 0 R C (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II m 0 R C (a) 117.4 Caps to higher ends of sub-sur			(a) 250 mm Centre bulb PVC waterstop	m	231	685	R 158 505
17 17.1 SUB-SOIL DRAINAGE (c) Chute wai - 12 x 12 mm Polysulphide sealant m 0 R C 17.1 SUB-SOIL DRAINAGE (a) 0 m to 1,5 m (b) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material situated within the following depth ranges below the surface level: (a) 0 m to 1,5 m (b) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Exeavation in hard material (c) Extra over sub-tem (a), irrespective of depth, for: (c) Extra over sub-tem (a), irrespective of complying with SANS 533, Part II (c) Extra over sub-tem (a), irrespective of prine over sub-tem (a), irrespective of prine over sub-tem (b), irrespective of prine over sub-tem (c), irrespective of prine over sub-tem (c), irrespective (c), irrespective (c), irrespective (c), irrespective (16.2	Joint sealants (a) Chute wall - 12mm expanding cork (b) Chute wall - 12m Imprendated Bitumen Eibre hoard	m	0	0	RO
17 SUB-SOIL DRAINAGE Scheduled items Excavating soft material situated within the following depth ranges below the surface level: m ³ 108 0 R Cl (a) 0 m to 1,5 m (b) Extra over sub-item (a), irrespective of depth, for: (i) Excavation in hard material mice bit accession in hard material materia			(c) Chute wall - 12 x 12 mm Polysulphide sealant	m m	0	0	R 0 R 0
Image: Excavating soft material situated within the following depth ranges below the surface level: m ³	17	17.1	SUB-SOIL DRAINAGE Scheduled items				
b) Extra over sub-item (a), irrespective of depth, for: m mod o (b) Extra over sub-item (a), irrespective of depth, for: m ³ o o (1) Excavation in hard material m ³ o o R C 17.2 Natural permeable material in sub-solid drainage systems m ³ 102 o R C (a) Sand as specified on detail drawings m ³ 102 o R C 17.3 Pipes in sub-solid drainage system m ³ 0 o R C (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II m o o R C (b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech m 299 o R C 17.4 Caps to higher ends of sub-surface drain pipes No o o R C (a) High end of pipes of Drainex pipes No o o R C (a) Concrete structures for sub-soil drainage systems complete as per drawings No o R C (a) Sand for filter material hauled in excess of 1.0 km freehaul m ³ km o o R C (a) Sand for filter material (10 km)<			Excavating soft material situated within the following depth ranges below the surface level: (a) 0 m to 1.5 m	m ³	108	0	RO
17.2 Natural permeable material in sub-soil drainage systems (a) Sand as specified on detail drawings m ³ 102 0 R C 17.3 Pipes in sub-soil drainage system (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II (b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech (b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech (a) High end of pipes of Drainex pipes (a) High end of pipes of Drainex pipes (a) Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.4 Caps to higher ends of sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.5 Concrete 1500 mm dia 10.km freehaul (a) Sand for filter material (10 km) m ³ km 0 0 R C			 (b) Extra over sub-item (a), irrespective of depth, for: (i) Excavation in hard material 	m ³	0	0	R 0
17.3 Pipes in sub-soil drainage system (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II m (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II m (b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech m 2099 m 2099 R C m 2099 17.4 Caps to higher ends of sub-surface drain pipes (a) High end of pipes of Drainex pipes (a) High end of pipes of Drainex pipes (a) Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia Concrete 1500 mm dia concrete 1500 mm dia m m		17.2	Natural permeable material in sub-soil drainage systems (a) Sand as specified on detail drawings	m³	102	0	R 0
Image: Note of the second s		17.3	Pipes in sub-soil drainage system (a) 110 NB, Class 6, HDPE pressure pipe, non perforated, complying with SANS 533, Part II				
17.4 Caps to higher ends of sub-surface drain pipes (a) High end of pipes of Drainex pipes No 0 R C 17.5 Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.6 Overhaul for material hauled in excess of 1.0 km freehaul (a) Sand for filter material (10 km) m³.km 0 0 R C			(b) 75 NB, flexible slotted drainage pipes with smooth bore, "Drainex" or equivalent by Kaytech	m m	0 299	0	R0 R0
17.5 Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia No 0 R C 17.6 Overhaul for material hauled in excess of 1.0 km freehaul (a) Sand for filter material (10 km) m³.km 0 0 R C TOTAL CARRIED FORWARD TO SUMMARY		17.4	Caps to higher ends of sub-surface drain pipes (a) High end of pipes of Drainex pipes	No	0	n	R 0
17.6 Overhaul for material hauled in excess of 1.0 km freehaul (a) Sand for filter material (10 km) m ³ .km 0 0 R C TOTAL CARRIED FORWARD TO SUMMARY		17.5	Concrete outlet structures for sub-soil drainage systems complete as per drawings (a) Concrete 1500 mm dia	No		0	RO
TOTAL CARRIED FORWARD TO SUMMARY DI COMMAND		17.6	Overhaul for material hauled in excess of 1.0 km freehaul	m91			
	TOTA			III".KM	0	0	R 0 R 0

Table M.9: Langa Dam: Bill of quantities for costs common to all options – Intake and outlet works

A	EC	OM Intake and o	outlet works			
ITEM NO	PAYMENT		UNIT	Quantity	Rate (R)	AMOUNT (R)
1	1.1 2.1	Earthworks (a) Clearing and grubbing (b) Excavation - soft (c) Excavation - rock (d) Rockfill to abutments Rock supports (c) Bockholte _ am long	ha m ³ m ³ m ³	0.08 1 070.00 1 070.00 0.00	23 250.00 180.00 300.00 50.39	R 1 907 R 192 600 R 321 000 R 0
		(a) RockJolits - 311 foling (c) Rock anchors - 20m long, 25mm (d) Shotzrete and mesh - 75 mm long	no m²	0.00 0.00 0.00	437.04 218.52 299.50 0.00	R O R O
3	3.1	ACCESS BRIDGE Formwork (a) Smooth vertical (b) Smooth horizontal (c) Smooth balustrade	m² m² m²	512.00 336.00 0.00	488.46 488.46 730.12	R 250 090 R 164 122 R 0
	3.2	Unformed surface finish	m²	336.00	14.14	R 4 751
	3.3	Reinforcing (a) Mild steel (b) High yield steel (c) Mesh	t t t	0.00 46.60 0.00	12 854.15 13 419.74 59.13	R 0 R 0 R 625 360 R 0
	3.4	Concrete (a) Mass (b) Structural	m³ m³	0.00 460.00	1 156.87 1 413.96	R 0 R 650 420
	3.5	Miscellaneous (a) Bridge bearings (b) Joints (c) Other e.g Rainwater goods, ducting, etc	No m Sum	4.00 4.00 0.00	16 196.23 170.96 102 833.23	R 64 785 R 684 R 0
4	4.1	INTAKE TOWER AND OUTLET WORKS Drilling and grouting (a) Consolidation grouting	m drill	0.00	287.93	R 0
	4.2	Formwork (a) Smooth vertical - curved and plain (b) Smooth horizontal (c) Intricate (d) Form openings	m ² m ² m ² m ²	5 668.00 442.00 0.00 0.00	591.29 591.29 1 619.62 796.96	R 3 351 438 R 261 351 R 0 R 0
	4.3	Uniform surface finish	m²	592.00	14.65	R 8 675
	4.4	Reinforcing (a) Mild steel (b) High yield steel (c) Mesh (d) Mechanical rebar couples	t t No	0.00 409.00 0.00 0.00	14 139.57 13 419.74 64.27 442.18	R 0 R 5 488 672 R 0 R 0
	4.5	Concrete (a) Mass (b) Structural	m³ m³	0.00 4 288.00	1 156.87 1 700.00	R 0 R 7 289 600
	4.6	Structural Steelwork (a) Steel sections (b) Sheeting	Sum m²	1.00 0.00	2 000 000.00 0.00	R 2 000 000 R 0
	4.7	Miscellaneous (a) Waterstops (b) Other e.g Conduits, outlets, water proofing, etc.	m Sum	0.00 0.00	0.00 0.00 951.32 0.00	R 0 R 0
5	5.1	Site works (a) Site access roads (b) Site services	km Sum	1.00 0.00	0.00 0.00	R 0 R 0
6	6.1	Contractors accommodation				R 0
7	7.1	Mechanical Items (a) Gates and screens (b) Lifting equipment (c) Pipework and valves	Sum Sum Sum	1.00 1.00 1.00	20 000 000.00 10 000 000.00 15 000 000.00	R 20 000 000 R 10 000 000 R 15 000 000
8	8.1	Electrical Installation	Sum	0.00	0.00	RO
ΤΟΤΑ	LCARRIED	FORWARD TO SUMMARY				R 65 675 454